Suppr超能文献

使用图模型选择法进行稀疏逆协方差估计。

Sparse inverse covariance estimation with the graphical lasso.

作者信息

Friedman Jerome, Hastie Trevor, Tibshirani Robert

机构信息

Department of Statistics, Stanford University, CA 94305, USA.

出版信息

Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.

Abstract

We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.

摘要

我们考虑通过对逆协方差矩阵应用套索罚项来估计稀疏图的问题。利用套索的坐标下降法,我们开发了一种简单的算法——图形套索算法,它速度极快:最多一分钟就能解决一个1000节点的问题(约500,000个参数),比其他竞争方法快30到4000倍。它还在精确问题与Meinshausen和Bühlmann(2006)提出的近似方法之间提供了概念上的联系。我们用蛋白质组学的一些细胞信号数据对该方法进行了说明。

相似文献

1
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
3
Semiparametric regression in size-biased sampling.规模偏差抽样中的半参数回归
Biometrics. 2010 Mar;66(1):149-58. doi: 10.1111/j.1541-0420.2009.01260.x. Epub 2009 May 4.
4
The graphical lasso: New insights and alternatives.图形套索:新见解与替代方法。
Electron J Stat. 2012 Nov 9;6:2125-2149. doi: 10.1214/12-EJS740.
7
Sparse estimation of a covariance matrix.协方差矩阵的稀疏估计。
Biometrika. 2011 Dec;98(4):807-820. doi: 10.1093/biomet/asr054.
10

引用本文的文献

9
Graph Laplacian Learning with Exponential Family Noise.具有指数族噪声的图拉普拉斯学习
IEEE Trans Signal Inf Process Netw. 2025;11:641-654. doi: 10.1109/tsipn.2025.3572698. Epub 2025 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验