Friedman Jerome, Hastie Trevor, Tibshirani Robert
Department of Statistics, Stanford University, CA 94305, USA.
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.
我们考虑通过对逆协方差矩阵应用套索罚项来估计稀疏图的问题。利用套索的坐标下降法,我们开发了一种简单的算法——图形套索算法,它速度极快:最多一分钟就能解决一个1000节点的问题(约500,000个参数),比其他竞争方法快30到4000倍。它还在精确问题与Meinshausen和Bühlmann(2006)提出的近似方法之间提供了概念上的联系。我们用蛋白质组学的一些细胞信号数据对该方法进行了说明。