Suppr超能文献

多输出函数线性回归的平滑与局部稀疏估计

Smooth and Locally Sparse Estimation for Multiple-Output Functional Linear Regression.

作者信息

Fang Kuangnan, Zhang Xiaochen, Ma Shuangge, Zhang Qingzhao

机构信息

Department of Statistics, School of Economics, Xiamen University, China.

Key Laboratory of Econometrics, Ministry of Education, Xiamen University, China.

出版信息

J Stat Comput Simul. 2020;90(2):341-354. doi: 10.1080/00949655.2019.1680676. Epub 2019 Oct 22.

Abstract

Functional data analysis has attracted substantial research interest and the goal of functional sparsity is to produce a sparse estimate which assigns zero values over regions where the true underlying function is zero, i.e., no relationship between the response variable and the predictor variable. In this paper, we consider a functional linear regression models that explicitly incorporates the interconnections among the responses. We propose a locally sparse (i.e., zero on some subregions) estimator, multiple-smooth and locally sparse (m-SLoS) estimator, for coefficient functions base on the interconnections among the responses. This method is based on a combination of smooth and locally sparse (SLoS) estimator and Laplacian quadratic penalty function, where we used SLoS for encouraging locally sparse and Laplacian quadratic penalty for promoting similar locally sparse among coefficient functions associated with the interconnections among the responses. Simulations show excellent numerical performance of the proposed method in terms of the estimation of coefficient functions especially the coefficient functions are same for all multivariate responses. Practical merit of this modeling is demonstrated by one real application and the prediction shows significant improvements.

摘要

函数数据分析已引起了大量的研究兴趣,函数稀疏性的目标是产生一个稀疏估计,该估计在真实潜在函数为零的区域(即响应变量与预测变量之间不存在关系的区域)上赋予零值。在本文中,我们考虑一个明确纳入响应之间相互联系的函数线性回归模型。我们基于响应之间的相互联系,为系数函数提出了一种局部稀疏(即在某些子区域为零)估计器,即多重平滑和局部稀疏(m-SLoS)估计器。该方法基于平滑和局部稀疏(SLoS)估计器与拉普拉斯二次惩罚函数的组合,其中我们使用SLoS来鼓励局部稀疏,并使用拉普拉斯二次惩罚来促进与响应之间相互联系相关的系数函数之间的类似局部稀疏。模拟结果表明,所提出的方法在系数函数估计方面具有出色的数值性能,特别是当所有多变量响应的系数函数相同时。通过一个实际应用展示了这种建模的实际优点,并且预测显示出显著的改进。

相似文献

6
Sparse Multivariate Regression With Covariance Estimation.带协方差估计的稀疏多元回归
J Comput Graph Stat. 2010 Fall;19(4):947-962. doi: 10.1198/jcgs.2010.09188.

本文引用的文献

4
Sparse Multivariate Regression With Covariance Estimation.带协方差估计的稀疏多元回归
J Comput Graph Stat. 2010 Fall;19(4):947-962. doi: 10.1198/jcgs.2010.09188.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验