Suppr超能文献

石墨烯作为有机光伏中的透明导电电极:在石墨烯形态、空穴传输层和对电极方面的研究。

Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Nano Lett. 2012 Jan 11;12(1):133-40. doi: 10.1021/nl2029859. Epub 2011 Dec 1.

Abstract

In this work, organic photovoltaics (OPV) with graphene electrodes are constructed where the effect of graphene morphology, hole transporting layers (HTL), and counter electrodes are presented. Instead of the conventional poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) PEDOT:PSS HTL, an alternative transition metal oxide HTL (molybdenum oxide (MoO(3))) is investigated to address the issue of surface immiscibility between graphene and PEDOT:PSS. Graphene films considered here are synthesized via low-pressure chemical vapor deposition (LPCVD) using a copper catalyst and experimental issues concerning the transfer of synthesized graphene onto the substrates of OPV are discussed. The morphology of the graphene electrode and HTL wettability on the graphene surface are shown to play important roles in the successful integration of graphene films into the OPV devices. The effect of various cathodes on the device performance is also studied. These factors (i.e., suitable HTL, graphene surface morphology and residues, and the choice of well-matching counter electrodes) will provide better understanding in utilizing graphene films as transparent conducting electrodes in future solar cell applications.

摘要

在这项工作中,构建了具有石墨烯电极的有机光伏(OPV),其中呈现了石墨烯形态、空穴传输层(HTL)和对电极的影响。替代传统的聚(3,4-亚乙基二氧噻吩)/聚(苯乙烯磺酸盐)PEDOT:PSS HTL,研究了替代的过渡金属氧化物 HTL(氧化钼(MoO(3)))来解决石墨烯和 PEDOT:PSS 之间表面不混溶性的问题。此处考虑的石墨烯膜是通过低压化学气相沉积(LPCVD)使用铜催化剂合成的,并讨论了有关将合成的石墨烯转移到 OPV 衬底上的实验问题。显示了石墨烯电极的形态和 HTL 在石墨烯表面上的润湿性在成功将石墨烯膜集成到 OPV 器件中起着重要作用。还研究了各种阴极对器件性能的影响。这些因素(即,合适的 HTL、石墨烯表面形态和残留物以及匹配良好的对电极的选择)将为将来在太阳能电池应用中利用石墨烯膜作为透明导电电极提供更好的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验