Suppr超能文献

光活化条件下单线态氧处理对氮掺杂化学气相沉积石墨烯中空穴传导率的影响

Effective hole conductivity in nitrogen-doped CVD-graphene by singlet oxygen treatment under photoactivation conditions.

作者信息

Bianco Giuseppe Valerio, Sacchetti Alberto, Grande Marco, D'Orazio Antonella, Milella Antonella, Bruno Giovanni

机构信息

Institute of Nanotechnology, CNR‑NANOTEC, Dipartimento Di Chimica, Università Di Bari, via Orabona, 4, 70126, Bari, Italy.

Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico Di Bari, via Orabona,4, 70123, Bari, Italy.

出版信息

Sci Rep. 2022 May 24;12(1):8703. doi: 10.1038/s41598-022-12696-2.

Abstract

Nitrogen substitutional doping in the π-basal plane of graphene has been used to modulate the material properties and in particular the transition from hole to electron conduction, thus enlarging the field of potential applications. Depending on the doping procedure, nitrogen moieties mainly include graphitic-N, combined with pyrrolic-N and pyridinic-N. However, pyridine and pyrrole configurations of nitrogen are predominantly introduced in monolayer graphene:N lattice as prepared by CVD. In this study, we investigate the possibility of employing pyridinic-nitrogen as a reactive site as well as activate a reactive center at the adjacent carbon atoms in the functionalized C-N bonds, for additional post reaction like oxidation. Furthermore, the photocatalytic activity of the graphene:N surface in the production of singlet oxygen (O) is fully exploited for the oxidation of the graphene basal plane with the formation of pyridine N-oxide and pyridone structures, both having zwitterion forms with a strong p-doping effect. A sheet resistance value as low as 100 Ω/□ is reported for a 3-layer stacked graphene:N film.

摘要

石墨烯π基面上的氮取代掺杂已被用于调节材料性能,特别是从空穴传导到电子传导的转变,从而扩大了潜在应用领域。根据掺杂过程,氮部分主要包括石墨氮,以及吡咯氮和吡啶氮。然而,氮的吡啶和吡咯构型主要是通过化学气相沉积(CVD)制备的单层石墨烯:N晶格中引入的。在本研究中,我们研究了将吡啶氮用作反应位点以及在功能化C-N键中的相邻碳原子处激活反应中心以进行额外的后反应(如氧化)的可能性。此外,石墨烯:N表面在单线态氧(O)生成中的光催化活性被充分利用,用于氧化石墨烯基面,形成吡啶N-氧化物和吡啶酮结构,两者都具有两性离子形式且具有强p型掺杂效应。据报道,三层堆叠的石墨烯:N薄膜的薄层电阻值低至100Ω/□。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddbf/9130222/6efc6ea9d197/41598_2022_12696_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验