Suppr超能文献

线性回归模型能否帮助临床医生解读基因型耐药数据?一项推导洛匹那韦评分的应用。

Can linear regression modeling help clinicians in the interpretation of genotypic resistance data? An application to derive a lopinavir-score.

机构信息

Department of Infection and Population Health, Division of Population Health, UCL Medical School, Royal Free Campus, London, United Kingdom.

出版信息

PLoS One. 2011;6(11):e25665. doi: 10.1371/journal.pone.0025665. Epub 2011 Nov 16.

Abstract

BACKGROUND

The question of whether a score for a specific antiretroviral (e.g. lopinavir/r in this analysis) that improves prediction of viral load response given by existing expert-based interpretation systems (IS) could be derived from analyzing the correlation between genotypic data and virological response using statistical methods remains largely unanswered.

METHODS AND FINDINGS

We used the data of the patients from the UK Collaborative HIV Cohort (UK CHIC) Study for whom genotypic data were stored in the UK HIV Drug Resistance Database (UK HDRD) to construct a training/validation dataset of treatment change episodes (TCE). We used the average square error (ASE) on a 10-fold cross-validation and on a test dataset (the EuroSIDA TCE database) to compare the performance of a newly derived lopinavir/r score with that of the 3 most widely used expert-based interpretation rules (ANRS, HIVDB and Rega). Our analysis identified mutations V82A, I54V, K20I and I62V, which were associated with reduced viral response and mutations I15V and V91S which determined lopinavir/r hypersensitivity. All models performed equally well (ASE on test ranging between 1.1 and 1.3, p = 0.34).

CONCLUSIONS

We fully explored the potential of linear regression to construct a simple predictive model for lopinavir/r-based TCE. Although, the performance of our proposed score was similar to that of already existing IS, previously unrecognized lopinavir/r-associated mutations were identified. The analysis illustrates an approach of validation of expert-based IS that could be used in the future for other antiretrovirals and in other settings outside HIV research.

摘要

背景

目前,基于专家解读系统(IS)的特定抗逆转录病毒(例如本分析中的洛匹那韦/利托那韦)评分是否能够通过分析基因型数据与病毒学应答之间的相关性,利用统计方法得出,这一问题仍未得到充分解答。

方法和发现

我们使用了英国合作 HIV 队列(UK CHIC)研究中患者的数据,这些数据的基因型数据存储在英国 HIV 耐药数据库(UK HDRD)中,构建了一个治疗方案改变事件(TCE)的训练/验证数据集。我们使用 10 折交叉验证和测试数据集(EuroSIDA TCE 数据库)上的平均平方误差(ASE)来比较新推导的洛匹那韦/利托那韦评分与 3 种最广泛使用的基于专家解读规则(ANRS、HIVDB 和 Rega)的性能。我们的分析确定了与病毒应答降低相关的突变 V82A、I54V、K20I 和 I62V,以及决定洛匹那韦/利托那韦过敏的突变 I15V 和 V91S。所有模型的性能都相当(测试中的 ASE 在 1.1 到 1.3 之间,p = 0.34)。

结论

我们充分探索了线性回归构建基于洛匹那韦/利托那韦的 TCE 简单预测模型的潜力。虽然我们提出的评分的性能与现有的 IS 相似,但确定了之前未被识别的洛匹那韦/利托那韦相关突变。该分析说明了验证基于专家解读系统的方法,未来可用于其他抗逆转录病毒药物和 HIV 研究以外的其他环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb41/3217925/ee192b853046/pone.0025665.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验