University of California School of Medicine, Davis, California, United States of America.
PLoS One. 2011;6(11):e27417. doi: 10.1371/journal.pone.0027417. Epub 2011 Nov 16.
MicroRNAs (miRs) negatively regulate transcription and are important determinants of normal heart development and heart failure pathogenesis. Despite the significant knowledge gained in mouse studies, their functional roles in human (h) heart remain elusive.
We hypothesized that miRs that figure prominently in cardiac differentiation are differentially expressed in differentiating, developing, and terminally mature human cardiomyocytes (CMs). As a first step, we mapped the miR profiles of human (h) embryonic stem cells (ESCs), hESC-derived (hE), fetal (hF) and adult (hA) ventricular (V) CMs. 63 miRs were differentially expressed between hESCs and hE-VCMs. Of these, 29, including the miR-302 and -371/372/373 clusters, were associated with pluripotency and uniquely expressed in hESCs. Of the remaining miRs differentially expressed in hE-VCMs, 23 continued to express highly in hF- and hA-VCMs, with miR-1, -133, and -499 displaying the largest fold differences; others such as miR-let-7a, -let-7b, -26b, -125a and -143 were non-cardiac specific. Functionally, LV-miR-499 transduction of hESC-derived cardiovascular progenitors significantly increased the yield of hE-VCMs (to 72% from 48% of control; p<0.05) and contractile protein expression without affecting their electrophysiological properties (p>0.05). By contrast, LV-miR-1 transduction did not bias the yield (p>0.05) but decreased APD and hyperpolarized RMP/MDP in hE-VCMs due to increased I(to), I(Ks) and I(Kr), and decreased I(f) (p<0.05) as signs of functional maturation. Also, LV-miR-1 but not -499 augmented the immature Ca(2+) transient amplitude and kinetics. Molecular pathway analyses were performed for further insights.
We conclude that miR-1 and -499 play differential roles in cardiac differentiation of hESCs in a context-dependent fashion. While miR-499 promotes ventricular specification of hESCs, miR-1 serves to facilitate electrophysiological maturation.
微小 RNA(miRs)负向调控转录,是正常心脏发育和心力衰竭发病机制的重要决定因素。尽管在小鼠研究中已经获得了大量的知识,但它们在人类(h)心脏中的功能作用仍然难以捉摸。
我们假设在心脏分化中起重要作用的 miRs 在分化、发育和终末成熟的人类心肌细胞(CM)中表达不同。作为第一步,我们绘制了人类胚胎干细胞(hESCs)、hESC 衍生的(hE)、胎儿(hF)和成人(hA)心室(V)CM 的 miR 图谱。hESCs 和 hE-VCMs 之间有 63 个 miRs 表达不同。其中,包括 miR-302 和 -371/372/373 簇在内的 29 个 miRs 与多能性相关,并且在 hESCs 中特异表达。在 hE-VCMs 中表达不同的剩余 miRs 中,有 23 个在 hF 和 hA-VCMs 中继续高表达,其中 miR-1、-133 和 -499 的倍数差异最大;其他如 miR-let-7a、-let-7b、-26b、-125a 和 -143 则是非心脏特异性的。功能上,LV-miR-499 转导 hESC 衍生的心血管祖细胞显著增加 hE-VCMs 的产量(从对照组的 48%增加到 72%;p<0.05)和收缩蛋白表达,而不影响其电生理特性(p>0.05)。相比之下,LV-miR-1 转导并没有改变产量(p>0.05),但由于 I(to)、I(Ks) 和 I(Kr)增加以及 I(f)减少,导致 hE-VCMs 的 APD 和 RMP/MDP 超极化(p<0.05),这是功能成熟的迹象。此外,LV-miR-1 但不是 -499 增加了不成熟 Ca(2+)瞬变幅度和动力学。为了进一步深入了解,进行了分子途径分析。
我们得出结论,miR-1 和 -499 以依赖于背景的方式在 hESC 的心脏分化中发挥不同的作用。虽然 miR-499 促进 hESC 的心室特化,但 miR-1 有助于促进电生理成熟。