Suppr超能文献

拉曼光谱对正常患者变异性的敏感性。

Sensitivity of Raman spectroscopy to normal patient variability.

机构信息

Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37235, USA.

出版信息

J Biomed Opt. 2011 Nov;16(11):117004. doi: 10.1117/1.3646210.

Abstract

Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

摘要

许多研究团队已经使用拉曼光谱学来诊断宫颈发育不良,但很少有研究关注正常生理变化对拉曼光谱的影响。我们评估了四个可能影响正常拉曼光谱的患者变量:种族/民族、体重指数(BMI)、生育状况和社会经济地位。我们从接受常规宫颈发育不良筛查的 75 名患者中采集了拉曼光谱。使用稀疏多项逻辑回归(SMLR)对来自正常宫颈患者的拉曼光谱进行分类,以确定这些变量是否具有显著影响。结果表明,BMI 和生育状况的影响最大,而种族/民族和社会经济地位的影响有限。将 BMI 和产科史纳入分类算法中,可能会提高拉曼光谱检测疾病的灵敏度和特异性。目前正在进行研究以评估这些变量对疾病的影响。

相似文献

1
Sensitivity of Raman spectroscopy to normal patient variability.
J Biomed Opt. 2011 Nov;16(11):117004. doi: 10.1117/1.3646210.
2
Effect of normal variations on disease classification of Raman spectra from cervical tissue.
Analyst. 2011 Jul 21;136(14):2981-7. doi: 10.1039/c0an01020k. Epub 2011 Jun 13.
3
Effect of hormonal variation on Raman spectra for cervical disease detection.
Am J Obstet Gynecol. 2009 May;200(5):512.e1-5. doi: 10.1016/j.ajog.2008.11.024. Epub 2009 Feb 23.
4
Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia.
Appl Spectrosc. 2007 Sep;61(9):986-93. doi: 10.1366/000370207781746053.
5
Application of Raman spectroscopy for cervical dysplasia diagnosis.
J Biophotonics. 2009 Feb;2(1-2):81-90. doi: 10.1002/jbio.200910001.
6
High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia.
Anal Chem. 2009 Nov 1;81(21):8908-15. doi: 10.1021/ac9015159.
7
Role of cervicitis in the Raman-based optical diagnosis of cervical intraepithelial neoplasia.
J Biomed Opt. 2008 Sep-Oct;13(5):054029. doi: 10.1117/1.2976114.
8
Near-infrared Raman spectroscopy for in vitro detection of cervical precancers.
Photochem Photobiol. 1998 Jul;68(1):123-32. doi: 10.1562/0031-8655(1998)068<0123:nirsfv>2.3.co;2.
10
In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy.
Am J Obstet Gynecol. 2018 May;218(5):528.e1-528.e18. doi: 10.1016/j.ajog.2018.01.030. Epub 2018 Feb 2.

引用本文的文献

1
Subcellular and macrostructural immediate responders to airblast traumatic brain injury.
Sci Rep. 2025 Aug 4;15(1):28454. doi: 10.1038/s41598-025-13288-6.
2
In vivo Raman spectroscopy monitors cervical change during labor.
Am J Obstet Gynecol. 2022 Aug;227(2):275.e1-275.e14. doi: 10.1016/j.ajog.2022.02.019. Epub 2022 Feb 19.
4
In vivo Raman spectroscopy for biochemical monitoring of the human cervix throughout pregnancy.
Am J Obstet Gynecol. 2018 May;218(5):528.e1-528.e18. doi: 10.1016/j.ajog.2018.01.030. Epub 2018 Feb 2.
5
Clinical instrumentation and applications of Raman spectroscopy.
Chem Soc Rev. 2016 Apr 7;45(7):1958-79. doi: 10.1039/c5cs00581g.
6
Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection.
Surgery. 2016 Jan;159(1):193-202. doi: 10.1016/j.surg.2015.06.047. Epub 2015 Oct 9.
7
Current Advances in the Application of Raman Spectroscopy for Molecular Diagnosis of Cervical Cancer.
Biomed Res Int. 2015;2015:561242. doi: 10.1155/2015/561242. Epub 2015 Jun 9.
10
Near-infrared Raman Microspectroscopy Detects High-risk Human Papillomaviruses.
Transl Oncol. 2012 Jun;5(3):172-9. doi: 10.1593/tlo.12106. Epub 2012 Jun 1.

本文引用的文献

1
Raman spectroscopy for the detection of cancers and precancers.
J Biomed Opt. 1996 Jan;1(1):31-70. doi: 10.1117/12.227815.
2
Effect of normal variations on disease classification of Raman spectra from cervical tissue.
Analyst. 2011 Jul 21;136(14):2981-7. doi: 10.1039/c0an01020k. Epub 2011 Jun 13.
5
Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.
Int J Cancer. 2010 Dec 15;127(12):2893-917. doi: 10.1002/ijc.25516.
6
Cancer statistics, 2010.
CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300. doi: 10.3322/caac.20073. Epub 2010 Jul 7.
7
A spectral phenotype of oncogenic human papillomavirus-infected exfoliative cervical cytology distinguishes women based on age.
Clin Chim Acta. 2010 Aug 5;411(15-16):1027-33. doi: 10.1016/j.cca.2010.03.029. Epub 2010 Mar 30.
9
Variation of fluorescence spectroscopy during the menstrual cycle.
Opt Express. 2002 Jun 17;10(12):493-504. doi: 10.1364/oe.10.000493.
10
A comparative Raman and CARS imaging study of colon tissue.
J Biophotonics. 2009 May;2(5):303-12. doi: 10.1002/jbio.200810063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验