School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
Enzyme Microb Technol. 2011 Apr 7;48(4-5):371-7. doi: 10.1016/j.enzmictec.2010.12.014. Epub 2011 Jan 12.
Although cellulosic materials of plant origin are the most abundant utilizable biomass resource, the amino acid-producing organism Corynebacterium glutamicum can not utilize these materials. Here we report the engineering of a C. glutamicum strain expressing functional minicellulosomes containing chimeric endoglucanase E bound to miniCbpA from Clostridium cellulovorans that can hydrolyze cellulosic materials. The chimeric endoglucanase E consists of the endoglucanase E catalytic backbone of Clostridium thermocellum fused with the endoglucanase B dockerin domain of C. cellulovorans. The resulting strain degraded cellulose efficiently by substrate targeting via the carbohydrate binding module. The assembly of minicellulosomes increased the activity against carboxymethyl cellulose approximately 2.8-fold compared with that for the corresponding enzymes alone. This is the first report of the formation of Clostridium minicellulosomes by C. glutamicum. The development of C. glutamicum strain that is capable of more effective cellulose hydrolysis brings about a realization of consolidated bioprocessing for the utilization of cellulosic biomass.
尽管植物来源的纤维素材料是最丰富的可用生物质资源,但产氨基酸的生物体谷氨酸棒杆菌不能利用这些材料。在这里,我们报告了一种工程化的谷氨酸棒杆菌菌株的表达,该菌株表达的功能性微细胞体含有与纤维丁酸梭菌的 miniCbpA 结合的嵌合内切葡聚糖酶 E,能够水解纤维素材料。嵌合内切葡聚糖酶 E 由热纤维梭菌的内切葡聚糖酶 E 催化骨架与纤维丁酸梭菌的内切葡聚糖酶 B dockerin 结构域融合而成。所得菌株通过碳水化合物结合模块进行底物靶向,有效地降解纤维素。与单独使用相应酶相比,微细胞体的组装使羧甲基纤维素的活性增加了约 2.8 倍。这是首次由谷氨酸棒杆菌形成梭菌微细胞体的报告。能够更有效地水解纤维素的谷氨酸棒杆菌菌株的开发为利用纤维素生物质的整合生物加工带来了实现的可能。