Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
Psychopharmacology (Berl). 2012 May;221(2):297-315. doi: 10.1007/s00213-011-2574-z. Epub 2011 Nov 24.
Identification of biomarkers that establish diagnosis or treatment response is critical to the advancement of research and management of patients with depression.
Our goal was to identify biomarkers that can potentially assess fluoxetine response and risk to poor treatment outcome.
We measured behavior, gene expression, and the levels of 36 neurobiochemical analytes across a panel of genetically diverse mouse inbred lines after chronic treatment with water or fluoxetine.
Glyoxylase 1 (GLO1) and guanine nucleotide-binding protein 1 (GNB1) mostly account for baseline anxiety-like and depressive-like behavior, indicating a common biological link between depression and anxiety. Fluoxetine-induced biochemical alterations discriminated positive responders, while baseline neurobiochemical differences differentiated negative responders (p < 0.006). Results show that glial fibrillary acidic protein, S100 beta protein, GLO1, and histone deacetylase 5 contributed most to fluoxetine response. These proteins are linked within a cellular growth/proliferation pathway, suggesting the involvement of cellular genesis in fluoxetine response. Furthermore, a candidate genetic locus that associates with baseline depressive-like behavior contains a gene that encodes for cellular proliferation/adhesion molecule (Cadm1), supporting a genetic basis for the role of neuro/gliogenesis in depression.
We provided a comprehensive analysis of behavioral, neurobiochemical, and transcriptome data across 30 mouse inbred strains that has not been accomplished before. We identified biomarkers that influence fluoxetine response, which, altogether, implicate the importance of cellular genesis in fluoxetine treatment. More broadly, this approach can be used to assess a wide range of drug response phenotypes that are challenging to address in human samples.
鉴定能够确立诊断或治疗反应的生物标志物对于推进抑郁症患者的研究和管理至关重要。
我们的目标是鉴定潜在的生物标志物,以评估氟西汀的反应和治疗结局不良的风险。
我们在一组遗传多样性的近交系小鼠中,在慢性给予水或氟西汀后,测量了行为、基因表达和 36 种神经生化分析物的水平。
糖氧还蛋白 1(GLO1)和鸟嘌呤核苷酸结合蛋白 1(GNB1)主要解释了基线焦虑样和抑郁样行为,表明抑郁和焦虑之间存在共同的生物学联系。氟西汀诱导的生化改变可区分阳性反应者,而基线神经生化差异则可区分阴性反应者(p<0.006)。结果表明,胶质纤维酸性蛋白、S100β蛋白、GLO1 和组蛋白去乙酰化酶 5 对氟西汀的反应贡献最大。这些蛋白在细胞生长/增殖途径中相互关联,提示细胞发生与氟西汀反应有关。此外,与基线抑郁样行为相关的候选遗传基因座包含编码细胞增殖/黏附分子(Cad m1)的基因,支持神经/神经发生在抑郁症中的作用的遗传基础。
我们对 30 个近交系小鼠的行为、神经生化和转录组数据进行了全面分析,这在以前是没有完成的。我们鉴定了影响氟西汀反应的生物标志物,这些标志物共同表明细胞发生在氟西汀治疗中的重要性。更广泛地说,这种方法可用于评估在人类样本中难以解决的广泛的药物反应表型。