Suppr超能文献

线粒体转录:来自小鼠模型的经验教训。

Mitochondrial transcription: lessons from mouse models.

作者信息

Peralta Susana, Wang Xiao, Moraes Carlos T

机构信息

University of Miami Miller School of Medicine, Department of Neurology, Miami, FL 33136, USA.

出版信息

Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):961-9. doi: 10.1016/j.bbagrm.2011.11.001. Epub 2011 Nov 18.

Abstract

Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ~16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.

摘要

哺乳动物线粒体DNA(mtDNA)是一个约16.5千碱基对(kb)的环状双链DNA基因组,它编码产生ATP的氧化磷酸化系统(OXPHOS)的13种催化蛋白,以及mtDNA转录本翻译所需的rRNA和tRNA。因此,mtDNA转录和复制所需的所有组分都由核基因组编码,OXPHOS系统的其余组分和线粒体翻译机制也是如此。mtDNA基因表达的调控对于响应代谢需求和病理过程调节OXPHOS能力非常重要。体外和体内研究的结合使得能够鉴定哺乳动物基础mtDNA转录所需的核心机制以及一些调节mtDNA转录的蛋白质。具体而言,过去几年中敲除小鼠品系的产生是理解体内mtDNA转录基础的关键。然而,人们普遍认为转录机制的许多组分仍然未知,并且对于不同代谢需求或疾病过程下的mtDNA基因表达调控知之甚少。在本综述中,我们将重点关注敲除小鼠模型的创建及其表型研究如何有助于理解哺乳动物的线粒体转录。本文是名为“线粒体基因表达”的特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81b2/3408808/a68811ba7987/nihms343192f1.jpg

相似文献

1
Mitochondrial transcription: lessons from mouse models.线粒体转录:来自小鼠模型的经验教训。
Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):961-9. doi: 10.1016/j.bbagrm.2011.11.001. Epub 2011 Nov 18.
2
Maintenance and Expression of Mammalian Mitochondrial DNA.哺乳动物线粒体 DNA 的维持和表达。
Annu Rev Biochem. 2016 Jun 2;85:133-60. doi: 10.1146/annurev-biochem-060815-014402. Epub 2016 Mar 24.
7
Replication and Transcription of Human Mitochondrial DNA.人类线粒体 DNA 的复制和转录。
Annu Rev Biochem. 2024 Aug;93(1):47-77. doi: 10.1146/annurev-biochem-052621-092014. Epub 2024 Jul 2.

引用本文的文献

3
Mechanisms and regulation of human mitochondrial transcription.人类线粒体转录的机制和调控。
Nat Rev Mol Cell Biol. 2024 Feb;25(2):119-132. doi: 10.1038/s41580-023-00661-4. Epub 2023 Oct 2.

本文引用的文献

4
The human mitochondrial transcriptome.人类线粒体转录组。
Cell. 2011 Aug 19;146(4):645-58. doi: 10.1016/j.cell.2011.06.051.
7
Mitochondrial DNA transcription regulation and nucleoid organization.线粒体 DNA 转录调控与核区组织。
J Inherit Metab Dis. 2011 Aug;34(4):941-51. doi: 10.1007/s10545-011-9330-8. Epub 2011 May 4.
10
TEFM (c17orf42) is necessary for transcription of human mtDNA.TEFM(c17orf42)对于人线粒体 DNA 的转录是必需的。
Nucleic Acids Res. 2011 May;39(10):4284-99. doi: 10.1093/nar/gkq1224. Epub 2011 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验