Suppr超能文献

线粒体转录:来自小鼠模型的经验教训。

Mitochondrial transcription: lessons from mouse models.

作者信息

Peralta Susana, Wang Xiao, Moraes Carlos T

机构信息

University of Miami Miller School of Medicine, Department of Neurology, Miami, FL 33136, USA.

出版信息

Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):961-9. doi: 10.1016/j.bbagrm.2011.11.001. Epub 2011 Nov 18.

Abstract

Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ~16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.

摘要

哺乳动物线粒体DNA(mtDNA)是一个约16.5千碱基对(kb)的环状双链DNA基因组,它编码产生ATP的氧化磷酸化系统(OXPHOS)的13种催化蛋白,以及mtDNA转录本翻译所需的rRNA和tRNA。因此,mtDNA转录和复制所需的所有组分都由核基因组编码,OXPHOS系统的其余组分和线粒体翻译机制也是如此。mtDNA基因表达的调控对于响应代谢需求和病理过程调节OXPHOS能力非常重要。体外和体内研究的结合使得能够鉴定哺乳动物基础mtDNA转录所需的核心机制以及一些调节mtDNA转录的蛋白质。具体而言,过去几年中敲除小鼠品系的产生是理解体内mtDNA转录基础的关键。然而,人们普遍认为转录机制的许多组分仍然未知,并且对于不同代谢需求或疾病过程下的mtDNA基因表达调控知之甚少。在本综述中,我们将重点关注敲除小鼠模型的创建及其表型研究如何有助于理解哺乳动物的线粒体转录。本文是名为“线粒体基因表达”的特刊的一部分。

相似文献

1
Mitochondrial transcription: lessons from mouse models.
Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):961-9. doi: 10.1016/j.bbagrm.2011.11.001. Epub 2011 Nov 18.
2
Maintenance and Expression of Mammalian Mitochondrial DNA.
Annu Rev Biochem. 2016 Jun 2;85:133-60. doi: 10.1146/annurev-biochem-060815-014402. Epub 2016 Mar 24.
3
mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription.
Cell Metab. 2009 Jun;9(6):499-511. doi: 10.1016/j.cmet.2009.04.010.
5
Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation.
Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):1107-11. doi: 10.1016/j.bbagrm.2011.10.008. Epub 2011 Oct 22.
6
Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number.
Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):921-9. doi: 10.1016/j.bbagrm.2012.03.002. Epub 2012 Mar 21.
7
Replication and Transcription of Human Mitochondrial DNA.
Annu Rev Biochem. 2024 Aug;93(1):47-77. doi: 10.1146/annurev-biochem-052621-092014. Epub 2024 Jul 2.
9
Phosphorylation of mitochondrial transcription factor B2 controls mitochondrial DNA binding and transcription.
Biochem Biophys Res Commun. 2020 Jul 30;528(3):580-585. doi: 10.1016/j.bbrc.2020.05.141. Epub 2020 Jun 3.
10
Coordinating mitochondrial translation with assembly of the OXPHOS complexes.
Hum Mol Genet. 2024 May 22;33(R1):R47-R52. doi: 10.1093/hmg/ddae025.

引用本文的文献

1
The multifaceted role of mitochondria in cardiac function: insights and approaches.
Cell Commun Signal. 2024 Oct 29;22(1):525. doi: 10.1186/s12964-024-01899-x.
3
Mechanisms and regulation of human mitochondrial transcription.
Nat Rev Mol Cell Biol. 2024 Feb;25(2):119-132. doi: 10.1038/s41580-023-00661-4. Epub 2023 Oct 2.
4
Mitochondrial alterations in the cochlea of Cdk5rap1-knockout mice with age-related hearing loss.
FEBS Open Bio. 2023 Jul;13(7):1365-1374. doi: 10.1002/2211-5463.13655. Epub 2023 Jun 6.
5
MTERF3 contributes to MPP+-induced mitochondrial dysfunction in SH-SY5Y cells.
Acta Biochim Biophys Sin (Shanghai). 2022 Aug 25;54(8):1113-1121. doi: 10.3724/abbs.2022098.
7
Research Progress in the Molecular Functions of Plant mTERF Proteins.
Cells. 2021 Jan 21;10(2):205. doi: 10.3390/cells10020205.
8
Prognostic roles of mitochondrial transcription termination factors in non-small cell lung cancer.
Oncol Lett. 2019 Oct;18(4):3453-3462. doi: 10.3892/ol.2019.10680. Epub 2019 Jul 29.
9
Mitochondrial Damage and Activation of the STING Pathway Lead to Renal Inflammation and Fibrosis.
Cell Metab. 2019 Oct 1;30(4):784-799.e5. doi: 10.1016/j.cmet.2019.08.003. Epub 2019 Aug 29.
10
Activation of innate immunity by mitochondrial dsRNA in mouse cells lacking p53 protein.
RNA. 2019 Jun;25(6):713-726. doi: 10.1261/rna.069625.118. Epub 2019 Mar 20.

本文引用的文献

1
The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA.
Nat Struct Mol Biol. 2011 Oct 30;18(11):1290-6. doi: 10.1038/nsmb.2159.
2
Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA.
Nucleic Acids Res. 2012 Jan;40(2):614-24. doi: 10.1093/nar/gkr787. Epub 2011 Sep 23.
4
The human mitochondrial transcriptome.
Cell. 2011 Aug 19;146(4):645-58. doi: 10.1016/j.cell.2011.06.051.
5
Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA.
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13534-9. doi: 10.1073/pnas.1109263108. Epub 2011 Aug 1.
7
Mitochondrial DNA transcription regulation and nucleoid organization.
J Inherit Metab Dis. 2011 Aug;34(4):941-51. doi: 10.1007/s10545-011-9330-8. Epub 2011 May 4.
9
The core human mitochondrial transcription initiation complex: It only takes two to tango.
Transcription. 2011 Mar;2(2):55-59. doi: 10.4161/trns.2.2.14296.
10
TEFM (c17orf42) is necessary for transcription of human mtDNA.
Nucleic Acids Res. 2011 May;39(10):4284-99. doi: 10.1093/nar/gkq1224. Epub 2011 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验