基于鲁棒边缘匹配的肝脏三维术中超声与术前 CT 图像自动配准。
Automatic registration between 3D intra-operative ultrasound and pre-operative CT images of the liver based on robust edge matching.
机构信息
Department of Electrical Engineering, KAIST, Daejeon, Korea.
Department of Radiology, Seoul National University Hospital, Seoul, Korea.
出版信息
Phys Med Biol. 2012 Jan 7;57(1):69-91. doi: 10.1088/0031-9155/57/1/69. Epub 2011 Nov 29.
The registration of a three-dimensional (3D) ultrasound (US) image with a computed tomography (CT) or magnetic resonance image is beneficial in various clinical applications such as diagnosis and image-guided intervention of the liver. However, conventional methods usually require a time-consuming and inconvenient manual process for pre-alignment, and the success of this process strongly depends on the proper selection of initial transformation parameters. In this paper, we present an automatic feature-based affine registration procedure of 3D intra-operative US and pre-operative CT images of the liver. In the registration procedure, we first segment vessel lumens and the liver surface from a 3D B-mode US image. We then automatically estimate an initial registration transformation by using the proposed edge matching algorithm. The algorithm finds the most likely correspondences between the vessel centerlines of both images in a non-iterative manner based on a modified Viterbi algorithm. Finally, the registration is iteratively refined on the basis of the global affine transformation by jointly using the vessel and liver surface information. The proposed registration algorithm is validated on synthesized datasets and 20 clinical datasets, through both qualitative and quantitative evaluations. Experimental results show that automatic registration can be successfully achieved between 3D B-mode US and CT images even with a large initial misalignment.
三维(3D)超声(US)图像与计算机断层扫描(CT)或磁共振图像的配准在肝脏的诊断和图像引导介入等各种临床应用中是有益的。然而,传统方法通常需要耗时且不方便的手动预配准过程,并且该过程的成功与否强烈依赖于初始变换参数的正确选择。在本文中,我们提出了一种基于特征的自动仿射配准方法,用于肝脏的术中 3D US 与术前 CT 图像。在配准过程中,我们首先从 3D B 模式 US 图像中分割血管腔和肝脏表面。然后,我们使用所提出的边缘匹配算法自动估计初始配准变换。该算法基于改进的维特比算法,以非迭代的方式在两幅图像的血管中心线之间找到最可能的对应关系。最后,根据全局仿射变换,联合使用血管和肝脏表面信息对配准进行迭代细化。通过定性和定量评估,在合成数据集和 20 个临床数据集上验证了所提出的注册算法。实验结果表明,即使存在较大的初始失准,也可以成功地在 3D B 模式 US 与 CT 图像之间实现自动配准。