Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA.
IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.
Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1525-1538. doi: 10.1007/s11548-018-1786-7. Epub 2018 Jun 4.
The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images.
A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform.
Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm.
This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.
在神经外科手术过程中,大脑会发生显著的结构变化,包括高度非线性的变形和切除。恢复术前手术计划中确定的结构与大脑术中状态之间的空间映射信息可能会很有帮助。我们提出了一种新颖的基于特征的方法,用于实现术中神经外科超声图像的稳健、全自动可变形配准。
首先在超声图像对之间估计稀疏的局部图像特征对应关系,然后使用刚体、仿射和薄板样条模型来估计整个图像的密集映射。对应关系是从 3D 特征中得出的,3D 特征是从 3D 超声图像中自动提取的独特通用图像模式,并根据其几何形状(即位置、比例和方向)和局部图像外观的描述符进行特征化。基于最近邻描述符匹配和类似于 Hough 变换的概率投票模型,可以在超声图像之间获得特征对应关系。
实验在 9 个临床病例中,展示了我们在硬脑膜切开前后、切除过程中和切除后获得的术中超声图像上的方法。总共自动提取了 1620 个 3D 特征对应关系,由 11 位专家手动验证,并用于指导配准。然后,使用术前和术后超声图像中手动标记的对应地标,我们表明我们的基于特征的配准将目标配准误差的平均值从初始值 3.3 降低到 1.5 毫米。
该结果表明,3D 特征有望为 3D 超声配准提供稳健、准确的解决方案,并纠正图像引导神经外科中的大脑移位。