Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands.
Magn Reson Med. 2012 Mar;67(3):824-34. doi: 10.1002/mrm.23049. Epub 2011 Nov 29.
Designing multidimensional radiofrequency pulses for clinical application must take into account the local specific absorption rate (SAR) as controlling the global SAR does not guarantee suppression of hot spots. The maximum peak SAR, averaged over an N grams cube (local NgSAR), must be kept under certain safety limits. Computing the SAR over a three-dimensional domain can require several minutes and implementing this computation in a radiofrequency pulse design algorithm could slow down prohibitively the numerical process. In this article, a fast optimization algorithm is designed acting on a limited number of control points, which are strategically selected locations from the entire domain. The selection is performed by comparing the largest eigenvalues and the corresponding eigenvectors of the matrices which locally describe the tissue's amount of heating. The computation complexity is dramatically reduced. An additional critical step to accelerate the computations is to apply a multi shift conjugate gradient algorithm. Two transmit array setups are studied: a two channel 3 T birdcage body coil and a 12-channel 7 T transverse electromagnetic (TEM) head coil. In comparison with minimum power radiofrequency pulses, it is shown that a reduction of 36.5% and 35%, respectively, in the local NgSAR can be achieved within short, clinically feasible, computation times.
为临床应用设计多维射频脉冲时,必须考虑局部比吸收率 (SAR),因为控制全局 SAR 并不能保证热点的抑制。必须将 N 克立方体(局部 NgSAR)的最大峰值 SAR 平均值保持在一定的安全限制以下。在三维域上计算 SAR 可能需要几分钟,并且在射频脉冲设计算法中实现此计算可能会极大地减缓数值过程。在本文中,设计了一种快速优化算法,该算法作用于从整个域中选择的少数几个控制点。选择是通过比较局部描述组织加热量的矩阵的最大特征值及其对应的特征向量来完成的。计算复杂度大大降低。为了加速计算,还需要采取一个多移位共轭梯度算法。研究了两种发射天线设置:双通道 3 T 鸟笼体线圈和 12 通道 7 T 横向电磁 (TEM) 头部线圈。与最小功率射频脉冲相比,分别可以在短时间内实现局部 NgSAR 降低 36.5%和 35%,计算时间在临床可行的范围内。