121 S Fremont Ave, Apt 305, Baltimore, MD 21201 USA.
Cogn Neurodyn. 2010 Dec;4(4):315-35. doi: 10.1007/s11571-010-9115-z. Epub 2010 Jun 8.
Several regions of the brain which represent kinematic quantities are grouped under a single state-estimator framework. A theoretic effort is made to predict the activity of each cell population as a function of time using a simple state estimator (the Kalman filter). Three brain regions are considered in detail: the parietal cortex (reaching cells), the hippocampus (place cells and head-direction cells), and the entorhinal cortex (grid cells). For the reaching cell and place cell examples, we compute the perceived probability distributions of objects in the environment as a function of the observations. For the grid cell example, we show that the elastic behavior of the grids observed in experiments arises naturally from the Kalman filter. To our knowledge, the application of a tensor Kalman filter to grid cells is completely novel.
几个代表运动学数量的大脑区域被归为单个状态估计器框架下。理论上,我们努力使用简单的状态估计器(卡尔曼滤波器)来预测每个细胞群体随时间的活动。详细考虑了三个大脑区域:顶叶皮层(到达细胞)、海马体(位置细胞和头方向细胞)和内嗅皮层(网格细胞)。对于到达细胞和位置细胞的例子,我们根据观察结果计算环境中物体的感知概率分布。对于网格细胞的例子,我们表明实验中观察到的网格的弹性行为是从卡尔曼滤波器自然产生的。据我们所知,张量卡尔曼滤波器在网格细胞中的应用是完全新颖的。