Suppr超能文献

内嗅皮层 II 层网络模型中的θ相位编码与内嗅皮层-海马环路连接。

Theta phase coding in a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections.

机构信息

Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196, Japan,

出版信息

Cogn Neurodyn. 2007 Jun;1(2):169-84. doi: 10.1007/s11571-006-9003-8. Epub 2006 Oct 31.

Abstract

We investigated successive firing of the stellate cells within a theta cycle, which replicates the phase coding of place information, using a network model of the entorhinal cortex layer II with loop connections. Layer II of the entorhinal cortex (ECII) sends signals to the hippocampus, and the hippocampus sends signals back to layer V of the entorhinal cortex (ECV). In addition to this major pathway, projection from ECV to ECII also exists. It is, therefore, inferred that reverberation activity readily appears if projections from ECV to ECII are potentiated. The frequency of the reverberation would be in a gamma range because it takes signals 20-30 ms to go around the entorhinal-hippocampal loop circuits. On the other hand, it has been suggested that ECII is a theta rhythm generator. If the reverberation activity appears in the entorhinal-hippocampal loop circuits, gamma oscillation would be superimposed on a theta rhythm in ECII like a gamma-theta oscillation. This is a reminiscence of the theta phase coding of place information. In this paper, first, a network model of ECII will be developed in order to reproduce a theta rhythm. Secondly, we will show that loop connections from one stellate cell to the other one are selectively potentiated by afferent signals to ECII. Frequencies of those afferent signals are different, and transmission delay of the loop connections is 20 ms. As a result, stellate cells fire successively within one cycle of the theta rhythm. This resembles gamma-theta oscillation underlying the phase coding. Our model also replicates the phase precession of stellate cell firing within a cycle of subthreshold oscillation (theta rhythm).

摘要

我们研究了在一个 theta 周期内星状细胞的连续放电,该周期复制了位置信息的相位编码,使用具有环路连接的内嗅皮层 II 层的网络模型。内嗅皮层 II 层(ECII)向海马体发送信号,海马体向内嗅皮层 V 层(ECV)发送信号。除了这条主要途径之外,ECV 到 ECII 的投射也存在。因此,如果从 ECV 到 ECII 的投射被增强,就可以推断出易出现回响活动。由于信号在环绕内嗅皮质-海马环路电路时需要 20-30 毫秒,因此,回响的频率将处于伽马范围内。另一方面,有人提出 ECII 是 theta 节律发生器。如果回响活动出现在内嗅皮质-海马环路电路中,那么在 ECII 中,伽马振荡将叠加在 theta 节律上,形成 gamma-theta 振荡。这让人想起了位置信息的 theta 相位编码。在本文中,首先,我们将开发一个 ECII 的网络模型,以重现 theta 节律。其次,我们将展示来自一个星状细胞到另一个星状细胞的环路连接通过 ECII 的传入信号被选择性地增强。这些传入信号的频率不同,环路连接的传输延迟为 20 毫秒。结果,星状细胞在一个 theta 节律周期内相继放电。这类似于theta 节律下的 gamma-theta 振荡,为相位编码提供基础。我们的模型还复制了在亚阈值振荡(theta 节律)周期内星状细胞放电的相位超前。

相似文献

1
Theta phase coding in a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections.
Cogn Neurodyn. 2007 Jun;1(2):169-84. doi: 10.1007/s11571-006-9003-8. Epub 2006 Oct 31.
2
A theory of hippocampal memory based on theta phase precession.
Biol Cybern. 2003 Jul;89(1):1-9. doi: 10.1007/s00422-003-0415-9.
3
Hippocampus-independent phase precession in entorhinal grid cells.
Nature. 2008 Jun 26;453(7199):1248-52. doi: 10.1038/nature06957. Epub 2008 May 14.
4
Entorhinal theta phase precession sculpts dentate gyrus place fields.
Hippocampus. 2008;18(9):919-30. doi: 10.1002/hipo.20450.
5
A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop.
Neurobiol Learn Mem. 2015 Apr;120:69-83. doi: 10.1016/j.nlm.2015.02.002. Epub 2015 Feb 24.
6
Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro.
J Neurosci. 2003 Oct 29;23(30):9761-9. doi: 10.1523/JNEUROSCI.23-30-09761.2003.
7
Heterosynaptic modulation of evoked synaptic potentials in layer II of the entorhinal cortex by activation of the parasubiculum.
J Neurophysiol. 2016 Aug 1;116(2):658-70. doi: 10.1152/jn.00095.2016. Epub 2016 May 4.
8
Phase precession of grid cells in a network model without external pacemaker.
Hippocampus. 2013 Sep;23(9):786-96. doi: 10.1002/hipo.22133. Epub 2013 May 23.
9
Inhibitory Connectivity Dominates the Fan Cell Network in Layer II of Lateral Entorhinal Cortex.
J Neurosci. 2018 Nov 7;38(45):9712-9727. doi: 10.1523/JNEUROSCI.1290-18.2018. Epub 2018 Sep 24.

引用本文的文献

1
Modification of temporal pattern sensitivity for inputs from medial entorhinal cortex by lateral inputs in hippocampal granule cells.
Cogn Neurodyn. 2024 Jun;18(3):1047-1059. doi: 10.1007/s11571-023-09964-w. Epub 2023 Apr 13.
2
Energy expenditure computation of a single bursting neuron.
Cogn Neurodyn. 2019 Feb;13(1):75-87. doi: 10.1007/s11571-018-9503-3. Epub 2018 Sep 3.
3
Spatial information enhanced by non-spatial information in hippocampal granule cells.
Cogn Neurodyn. 2015 Feb;9(1):1-12. doi: 10.1007/s11571-014-9309-x. Epub 2014 Sep 11.
4
Energy coding in neural network with inhibitory neurons.
Cogn Neurodyn. 2015 Apr;9(2):129-44. doi: 10.1007/s11571-014-9311-3. Epub 2014 Oct 1.
5
Energy distribution property and energy coding of a structural neural network.
Front Comput Neurosci. 2014 Feb 21;8:14. doi: 10.3389/fncom.2014.00014. eCollection 2014.
6
A Kalman filtering approach to the representation of kinematic quantities by the hippocampal-entorhinal complex.
Cogn Neurodyn. 2010 Dec;4(4):315-35. doi: 10.1007/s11571-010-9115-z. Epub 2010 Jun 8.
7
Sensory feedback, error correction, and remapping in a multiple oscillator model of place-cell activity.
Front Comput Neurosci. 2011 Sep 29;5:39. doi: 10.3389/fncom.2011.00039. eCollection 2011.
8
Behavioral state-dependent episodic representations in rat CA1 neuronal activity during spatial alternation.
Cogn Neurodyn. 2009 Jun;3(2):165-75. doi: 10.1007/s11571-009-9081-5. Epub 2009 Apr 1.
9
The role of competitive learning in the generation of DG fields from EC inputs.
Cogn Neurodyn. 2009 Jun;3(2):177-87. doi: 10.1007/s11571-009-9079-z. Epub 2009 Mar 20.

本文引用的文献

1
Functional role of entorhinal cortex in working memory processing.
Neural Netw. 2005 Nov;18(9):1141-9. doi: 10.1016/j.neunet.2005.08.004. Epub 2005 Oct 27.
3
Microstructure of a spatial map in the entorhinal cortex.
Nature. 2005 Aug 11;436(7052):801-6. doi: 10.1038/nature03721. Epub 2005 Jun 19.
4
Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer.
Trends Neurosci. 2005 Feb;28(2):67-72. doi: 10.1016/j.tins.2004.12.001.
5
Spike phase precession persists after transient intrahippocampal perturbation.
Nat Neurosci. 2005 Jan;8(1):67-71. doi: 10.1038/nn1369. Epub 2004 Dec 12.
6
Background synaptic activity in rat entorhinal cortical neurones: differential control of transmitter release by presynaptic receptors.
J Physiol. 2005 Jan 1;562(Pt 1):107-20. doi: 10.1113/jphysiol.2004.076133. Epub 2004 Oct 21.
7
Spatial representation in the entorhinal cortex.
Science. 2004 Aug 27;305(5688):1258-64. doi: 10.1126/science.1099901.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验