Unité d'Epidémiologie Animale, UR346, Centre INRA de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France.
Biostatistics. 2012 Apr;13(2):241-55. doi: 10.1093/biostatistics/kxr043. Epub 2011 Nov 30.
Risk mapping in epidemiology enables areas with a low or high risk of disease contamination to be localized and provides a measure of risk differences between these regions. Risk mapping models for pooled data currently used by epidemiologists focus on the estimated risk for each geographical unit. They are based on a Poisson log-linear mixed model with a latent intrinsic continuous hidden Markov random field (HMRF) generally corresponding to a Gaussian autoregressive spatial smoothing. Risk classification, which is necessary to draw clearly delimited risk zones (in which protection measures may be applied), generally must be performed separately. We propose a method for direct classified risk mapping based on a Poisson log-linear mixed model with a latent discrete HMRF. The discrete hidden field (HF) corresponds to the assignment of each spatial unit to a risk class. The risk values attached to the classes are parameters and are estimated. When mapping risk using HMRFs, the conditional distribution of the observed field is modeled with a Poisson rather than a Gaussian distribution as in image segmentation. Moreover, abrupt changes in risk levels are rare in disease maps. The spatial hidden model should favor smoothed out risks, but conventional discrete Markov random fields (e.g. the Potts model) do not impose this. We therefore propose new potential functions for the HF that take into account class ordering. We use a Monte Carlo version of the expectation-maximization algorithm to estimate parameters and determine risk classes. We illustrate the method's behavior on simulated and real data sets. Our method appears particularly well adapted to localize high-risk regions and estimate the corresponding risk levels.
流行病学中的风险制图能够定位疾病污染风险低或高的区域,并提供这些区域之间风险差异的衡量标准。目前流行病学家使用的 pooled 数据风险制图模型侧重于每个地理单元的估计风险。它们基于泊松对数线性混合模型,通常对应于高斯自回归空间平滑的潜在内在连续隐马尔可夫随机场 (HMRF)。风险分类对于绘制明确划定的风险区域(可以在其中应用保护措施)是必要的,通常必须单独进行。我们提出了一种基于具有潜在离散 HMRF 的泊松对数线性混合模型的直接分类风险制图方法。离散隐藏字段 (HF) 对应于将每个空间单元分配到风险类别的任务。分配给类别的风险值是参数,并进行估计。在使用 HMRF 进行风险映射时,与图像分割中的高斯分布不同,观察到的字段的条件分布使用泊松分布进行建模。此外,疾病地图中的风险水平急剧变化很少见。空间隐藏模型应支持平滑风险,但传统的离散马尔可夫随机场(例如 Potts 模型)不强制要求这一点。因此,我们为 HF 提出了新的潜在函数,考虑到类别的顺序。我们使用期望最大化算法的蒙特卡罗版本来估计参数并确定风险类别。我们在模拟和真实数据集上演示了该方法的行为。我们的方法特别适用于定位高风险区域并估计相应的风险水平。