Suppr超能文献

疟疾风险、发病率和趋势建模:一种用于识别和定位高、低负担亚国家区域的时空方法。

Modelling of malaria risk, rates, and trends: A spatiotemporal approach for identifying and targeting sub-national areas of high and low burden.

机构信息

School of Geography and Environmental Sciences, Ulster University, Coleraine, United Kingdom.

School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom.

出版信息

PLoS Comput Biol. 2021 Mar 1;17(3):e1008669. doi: 10.1371/journal.pcbi.1008669. eCollection 2021 Mar.

Abstract

While mortality from malaria continues to decline globally, incidence rates in many countries are rising. Within countries, spatial and temporal patterns of malaria vary across communities due to many different physical and social environmental factors. To identify those areas most suitable for malaria elimination or targeted control interventions, we used Bayesian models to estimate the spatiotemporal variation of malaria risk, rates, and trends to determine areas of high or low malaria burden compared to their geographical neighbours. We present a methodology using Bayesian hierarchical models with a Markov Chain Monte Carlo (MCMC) based inference to fit a generalised linear mixed model with a conditional autoregressive structure. We modelled clusters of similar spatiotemporal trends in malaria risk, using trend functions with constrained shapes and visualised high and low burden districts using a multi-criterion index derived by combining spatiotemporal risk, rates and trends of districts in Zambia. Our results indicate that over 3 million people in Zambia live in high-burden districts with either high mortality burden or high incidence burden coupled with an increasing trend over 16 years (2000 to 2015) for all age, under-five and over-five cohorts. Approximately 1.6 million people live in high-incidence burden areas alone. Using our method, we have developed a platform that can enable malaria programs in countries like Zambia to target those high-burden areas with intensive control measures while at the same time pursue malaria elimination efforts in all other areas. Our method enhances conventional approaches and measures to identify those districts which had higher rates and increasing trends and risk. This study provides a method and a means that can help policy makers evaluate intervention impact over time and adopt appropriate geographically targeted strategies that address the issues of both high-burden areas, through intensive control approaches, and low-burden areas, via specific elimination programs.

摘要

虽然疟疾死亡率在全球范围内持续下降,但许多国家的发病率正在上升。在国家内部,由于许多不同的物理和社会环境因素,疟疾在社区之间的时空模式有所不同。为了确定最适合消除或有针对性控制疟疾干预措施的地区,我们使用贝叶斯模型来估计疟疾风险、发病率和趋势的时空变化,以确定与地理邻居相比疟疾负担较高或较低的地区。我们提出了一种使用贝叶斯层次模型和基于马尔可夫链蒙特卡罗(MCMC)的推理的方法,以拟合具有条件自回归结构的广义线性混合模型。我们使用具有约束形状的趋势函数来模拟疟疾风险的相似时空趋势聚类,并使用通过结合高、低疟疾风险地区的时空风险、发病率和趋势得出的多标准指数来可视化高、低疟疾负担地区。我们的结果表明,赞比亚有超过 300 万人生活在高负担地区,这些地区要么死亡率负担高,要么发病率负担高,并且在 16 年(2000 年至 2015 年)期间呈上升趋势。所有年龄、五岁以下和五岁以上人群都是如此。大约有 160 万人单独生活在高发病率负担地区。使用我们的方法,我们开发了一个平台,赞比亚等国家的疟疾规划可以在这些高负担地区采取强化控制措施,同时在所有其他地区继续努力消除疟疾。我们的方法增强了传统方法和措施,以确定那些发病率更高且呈上升趋势和风险的地区。本研究提供了一种方法和手段,可以帮助决策者随着时间的推移评估干预措施的影响,并采取适当的、具有针对性的地理策略,通过强化控制方法解决高负担地区的问题,通过具体的消除计划解决低负担地区的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9f3/7951982/59173130353d/pcbi.1008669.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验