Suppr超能文献

皮肤点刺试验对已证实食物过敏挑战的预测价值:系统评价。

The predictive value of skin prick testing for challenge-proven food allergy: a systematic review.

机构信息

Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Vic., Australia.

出版信息

Pediatr Allergy Immunol. 2012 Jun;23(4):347-52. doi: 10.1111/j.1399-3038.2011.01237.x. Epub 2011 Dec 4.

Abstract

Immunoglobulin E-mediated (IgE) food allergy affects 6-8% of children, and the prevalence is believed to be increasing. The gold standard of food allergy diagnosis is oral food challenges (OFCs); however, they are resource-consuming and potentially dangerous. Skin prick tests (SPTs) are able to detect the presence of allergen-specific IgE antibodies (sensitization), but they have low specificity for clinically significant food allergy. To reduce the need for OFCs, it has been suggested that children forgo an OFC if their SPT wheal size exceeds a cutoff that has a high predictability for food allergy. Although data for these studies are almost always gathered from high-risk populations, the 95% positive predictive values (PPVs) vary substantially between studies. SPT thresholds with a high probability of food allergy generated from these studies may not be generalizable to other populations, because of highly selective samples and variability in participant's age, test allergens, and food challenge protocol. Standardization of SPT devices and allergens, OFC protocols including standardized cessation criteria, and population-based samples would all help to improve generalizability of PPVs of SPTs.

摘要

免疫球蛋白 E 介导的(IgE)食物过敏影响 6-8%的儿童,且其发病率被认为正在上升。食物过敏诊断的金标准是口服食物激发试验(OFCs);然而,它们既耗费资源又存在潜在危险。皮肤点刺试验(SPTs)能够检测过敏原特异性 IgE 抗体(致敏)的存在,但它们对临床意义重大的食物过敏的特异性较低。为了减少 OFC 的需求,有人建议,如果 SPT 风团大小超过预测食物过敏的高截定点,则患儿可以避免进行 OFC。尽管这些研究的数据几乎总是来自高风险人群,但研究之间的 95%阳性预测值(PPV)差异很大。由于样本高度选择性以及参与者年龄、试验过敏原和食物激发方案的差异,这些研究产生的 SPT 食物过敏高概率阈值可能不适用于其他人群。SPT 设备和过敏原的标准化、包括标准化停止标准的 OFC 方案以及基于人群的样本,都将有助于提高 SPTs 的 PPV 的可推广性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验