Materials Science, California Institute of Technology, Pasadena, California 91125, USA.
Nat Mater. 2011 Dec 4;11(2):155-61. doi: 10.1038/nmat3184.
Fuel cells, and in particular solid-oxide fuel cells (SOFCs), enable high-efficiency conversion of chemical fuels into useful electrical energy and, as such, are expected to play a major role in a sustainable-energy future. A key step in the fuel-cell energy-conversion process is the electro-oxidation of the fuel at the anode. There has been increasing evidence in recent years that the presence of CeO(2)-based oxides (ceria) in the anodes of SOFCs with oxygen-ion-conducting electrolytes significantly lowers the activation overpotential for hydrogen oxidation. Most of these studies, however, employ porous, composite electrode structures with ill-defined geometry and uncontrolled interfacial properties. Accordingly, the means by which electrocatalysis is enhanced has remained unclear. Here we demonstrate unambiguously, through the use of ceria-metal structures with well-defined geometries and interfaces, that the near-equilibrium H(2) oxidation reaction pathway is dominated by electrocatalysis at the oxide/gas interface with minimal contributions from the oxide/metal/gas triple-phase boundaries, even for structures with reaction-site densities approaching those of commercial SOFCs. This insight points towards ceria nanostructuring as a route to enhanced activity, rather than the traditional paradigm of metal-catalyst nanostructuring.
燃料电池,特别是固体氧化物燃料电池 (SOFC),能够将化学燃料高效地转化为有用的电能,因此有望在可持续能源的未来中发挥重要作用。燃料电池能量转换过程中的一个关键步骤是在阳极处对燃料进行电氧化。近年来,越来越多的证据表明,在具有氧离子导电电解质的 SOFC 阳极中使用基于 CeO(2) 的氧化物(氧化铈)可显著降低氢氧化的活化过电势。然而,这些研究中的大多数都采用多孔复合电极结构,其几何形状不明确且界面特性不可控。因此,电催化增强的方式仍不清楚。在这里,我们通过使用具有明确定义几何形状和界面的 CeO(2)-金属结构,明确证明了具有接近商用 SOFC 反应位点密度的结构,即使在氧化物/金属/气体三相边界处的贡献最小,氧化物/气体界面处的电催化也主导了近平衡 H(2)氧化反应途径。这一见解表明 CeO(2)纳米结构是提高活性的一种途径,而不是传统的金属催化剂纳米结构的范例。