Elking Dennis M, Perera Lalith, Pedersen Lee G
University of North Carolina, Department of Chemistry, Chapel Hill, NC 27599, USA.
Comput Phys Commun. 2012 Feb 1;183(2):390-397. doi: 10.1016/j.cpc.2011.10.003.
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l(max) on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l(max) = 0 (atomic charges) to l(max) = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l(max) are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ l(max). In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (l(max) = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used.
本文描述了Hirshfeld(HD)和Hirshfeld迭代(HD-I)原子电荷密度划分方案的一种实现。对于任意形状和大小的分子,根据HD和HD-I原子电荷密度计算任意原子多极矩秩(l_{max})下的原子电荷和原子多极矩。通过将分子多极矩和分子周围的静电势(ESP)与其参考从头算值进行比较,对HD和HD-I原子电荷/多极矩进行了测试。一般来说,发现HD-I原子电荷/多极矩比HD原子电荷/多极矩能更好地重现从头算静电性质。通过将原子多极矩秩从(l_{max}=0)(原子电荷)增加到(l_{max}=4)(原子十六极矩),证明了在重现从头算静电性质方面精度的系统提高。对于(L\leq l_{max}),显示秩高达(l_{max})的HD和HD-I原子多极矩能精确重现秩为(L)的从头算分子多极矩。此外,还将仅由HD、HD-I和ChelpG原子电荷((l_{max}=0))计算得到的分子偶极矩与参考从头算值进行了比较。如果仅使用HD或HD-I原子电荷,在重现从头算分子偶极矩时会发现显著误差。