Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand.
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
J Math Biol. 2023 Sep 2;87(3):53. doi: 10.1007/s00285-023-01988-4.
The current rapid extinction of species leads not only to their loss but also the disappearance of the unique features they harbour, which have evolved along the branches of the underlying evolutionary tree. One proxy for estimating the feature diversity (FD) of a set S of species at the tips of a tree is 'phylogenetic diversity' (PD): the sum of the branch lengths of the subtree connecting the species in S. For a phylogenetic tree that evolves under a standard birth-death process, and which is then subject to a sudden extinction event at the present (the simple 'field of bullets' model with a survival probability of s per species) the proportion of the original PD that is retained after extinction at the present is known to converge quickly to a particular concave function [Formula: see text] as t grows. To investigate how the loss of FD mirrors the loss of PD for a birth-death tree, we model FD by assuming that distinct discrete features arise randomly and independently along the branches of the tree at rate r and are lost at a constant rate [Formula: see text]. We derive an exact mathematical expression for the ratio [Formula: see text] of the two expected feature diversities (prior to and following an extinction event at the present) as t becomes large. We find that although [Formula: see text] has a similar behaviour to [Formula: see text] (and coincides with it for [Formula: see text]), when [Formula: see text], [Formula: see text] is described by a function that is different from [Formula: see text]. We also derive an exact expression for the expected number of features that are present in precisely one extant species. Our paper begins by establishing some generic properties of FD in a more general (non-phylogenetic) setting and applies this to fixed trees, before considering the setting of random (birth-death) trees.
当前物种的快速灭绝不仅导致它们的消失,还导致它们所拥有的独特特征的消失,这些特征是沿着进化树的分支进化而来的。一种估计树顶物种集合 S 的特征多样性 (FD) 的代理是“系统发育多样性”(PD):连接 S 中物种的子树的分支长度之和。对于在标准出生-死亡过程下进化的系统发育树,然后在当前受到突然灭绝事件的影响(具有 s 个物种生存概率的简单“子弹场”模型),在当前灭绝后保留的原始 PD 的比例已知快速收敛到特定的凹函数 [公式:见文本] 随着 t 的增长。为了研究 FD 的损失如何反映出生-死树中 PD 的损失,我们通过假设独特的离散特征以速率 r 随机且独立地沿着树的分支出现,并以恒定速率 [公式:见文本] 丢失来对 FD 进行建模。我们推导出了一个精确的数学表达式,用于计算两个预期特征多样性(在当前灭绝事件之前和之后)的比率 [公式:见文本],当 t 变得很大时。我们发现,尽管 [公式:见文本] 与 [公式:见文本] 具有相似的行为(并且在 [公式:见文本] 时与之重合),但当 [公式:见文本] 时,[公式:见文本] 由一个与 [公式:见文本] 不同的函数来描述。我们还推导出了一个精确的表达式,用于计算精确存在于一个现存物种中的特征数量的期望。我们的论文首先在更一般(非系统发育)的设置中建立了 FD 的一些通用属性,并将其应用于固定树,然后考虑随机(出生-死亡)树的设置。