Lai Chow Yin, Xiang Cheng, Lee Tong Heng
National University of Singapore Graduate School for Integrative Sciences and Engineering, 117456 Singapore.
IEEE Trans Neural Netw. 2011 Dec;22(12):2189-200. doi: 10.1109/TNN.2011.2175946. Epub 2011 Nov 30.
The piecewise affine (PWA) model represents an attractive model structure for approximating nonlinear systems. In this paper, a procedure for obtaining the PWA autoregressive exogenous (ARX) (autoregressive systems with exogenous inputs) models of nonlinear systems is proposed. Two key parameters defining a PWARX model, namely, the parameters of locally affine subsystems and the partition of the regressor space, are estimated, the former through a least-squares-based identification method using multiple models, and the latter using standard procedures such as neural network classifier or support vector machine classifier. Having obtained the PWARX model of the nonlinear system, a controller is then derived to control the system for reference tracking. Both simulation and experimental studies show that the proposed algorithm can indeed provide accurate PWA approximation of nonlinear systems, and the designed controller provides good tracking performance.
分段仿射(PWA)模型是一种用于逼近非线性系统的具有吸引力的模型结构。本文提出了一种获取非线性系统的PWA自回归外生(ARX)(带外生输入的自回归系统)模型的方法。定义PWARX模型的两个关键参数,即局部仿射子系统的参数和回归空间的划分,被进行了估计,前者通过基于最小二乘法的多模型辨识方法来估计,后者则使用诸如神经网络分类器或支持向量机分类器等标准程序来估计。在获得非线性系统的PWARX模型后,接着推导一个控制器来控制系统以进行参考跟踪。仿真和实验研究均表明,所提出的算法确实能够为非线性系统提供精确的PWA逼近,并且所设计的控制器具有良好的跟踪性能。