Suppr超能文献

用于 MALDI 质谱成像的稳健数据处理和归一化策略。

Robust data processing and normalization strategy for MALDI mass spectrometric imaging.

机构信息

Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom.

出版信息

Anal Chem. 2012 Feb 7;84(3):1310-9. doi: 10.1021/ac201767g. Epub 2012 Jan 10.

Abstract

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides localized information about the molecular content of a tissue sample. To derive reliable conclusions from MSI data, it is necessary to implement appropriate processing steps in order to compare peak intensities across the different pixels comprising the image. Here, we review commonly used normalization methods, and propose a rational data processing strategy, for robust evaluation and modeling of MSI data. The approach includes newly developed heuristic methods for selecting biologically relevant peaks and pixels to reduce the size of a data set and remove the influence of the applied MALDI matrix. The methods are demonstrated on a MALDI MSI data set of a sagittal section of rat brain (4750 bins, m/z = 50-1000, 111 × 185 pixels) and the proposed preferred normalization method uses the median intensity of selected peaks, which were determined to be independent of the MALDI matrix. This was found to effectively compensate for a range of known limitations associated with the MALDI process and irregularities in MS image sampling routines. This new approach is relevant for processing of all MALDI MSI data sets, and thus likely to have impact in biomarker profiling, preclinical drug distribution studies, and studies addressing underlying molecular mechanisms of tissue pathology.

摘要

基质辅助激光解吸/电离(MALDI)质谱成像(MSI)提供了组织样本中分子含量的局部信息。为了从 MSI 数据中得出可靠的结论,有必要实施适当的处理步骤,以便比较图像中包含的不同像素的峰强度。在这里,我们回顾了常用的归一化方法,并提出了一种合理的数据处理策略,用于稳健评估和建模 MSI 数据。该方法包括新开发的启发式方法,用于选择生物相关的峰和像素,以减小数据集的大小并消除应用的 MALDI 基质的影响。该方法在大鼠脑矢状切片的 MALDI MSI 数据集(4750 个 bin,m/z = 50-1000,111×185 像素)上进行了演示,所提出的优选归一化方法使用选定峰的中值强度,该强度被确定为与 MALDI 基质无关。这有效地补偿了与 MALDI 过程相关的一系列已知限制以及 MS 图像采样程序中的不规则性。这种新方法与所有 MALDI MSI 数据集的处理相关,因此可能对生物标志物分析、临床前药物分布研究以及解决组织病理学潜在分子机制的研究产生影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验