Suppr超能文献

高光谱可视化质谱成像数据。

Hyperspectral visualization of mass spectrometry imaging data.

机构信息

Biomolecular Medicine, Department of Surgery and Cancer, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.

出版信息

Anal Chem. 2013 Feb 5;85(3):1415-23. doi: 10.1021/ac302330a. Epub 2013 Jan 15.

Abstract

The acquisition of localized molecular spectra with mass spectrometry imaging (MSI) has a great, but as yet not fully realized, potential for biomedical diagnostics and research. The methodology generates a series of mass spectra from discrete sample locations, which is often analyzed by visually interpreting specifically selected images of individual masses. We developed an intuitive color-coding scheme based on hyperspectral imaging methods to generate a single overview image of this complex data set. The image color-coding is based on spectral characteristics, such that pixels with similar molecular profiles are displayed with similar colors. This visualization strategy was applied to results of principal component analysis, self-organizing maps and t-distributed stochastic neighbor embedding. Our approach for MSI data analysis, combining automated data processing, modeling and display, is user-friendly and allows both the spatial and molecular information to be visualized intuitively and effectively.

摘要

利用质谱成像(MSI)获取局部分子光谱具有巨大的潜力,但尚未得到充分实现,可用于生物医学诊断和研究。该方法从离散的样本位置生成一系列质谱,通常通过直观地解释特定选择的个别质量的图像进行分析。我们开发了一种基于高光谱成像方法的直观颜色编码方案,以生成此复杂数据集的单个概述图像。图像的颜色编码基于光谱特征,使得具有相似分子特征的像素显示为相似的颜色。这种可视化策略应用于主成分分析、自组织映射和 t 分布随机邻域嵌入的结果。我们的 MSI 数据分析方法结合了自动化数据处理、建模和显示,用户友好,可直观有效地显示空间和分子信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验