Suppr超能文献

使用云计算环境中的 MapReduce 进行超快速可扩展的锥形束 CT 重建。

Ultrafast and scalable cone-beam CT reconstruction using MapReduce in a cloud computing environment.

机构信息

Department of Electrical Engineering, Stanford University, California 94305, USA.

出版信息

Med Phys. 2011 Dec;38(12):6603-9. doi: 10.1118/1.3660200.

Abstract

PURPOSE

Four-dimensional CT (4DCT) and cone beam CT (CBCT) are widely used in radiation therapy for accurate tumor target definition and localization. However, high-resolution and dynamic image reconstruction is computationally demanding because of the large amount of data processed. Efficient use of these imaging techniques in the clinic requires high-performance computing. The purpose of this work is to develop a novel ultrafast, scalable and reliable image reconstruction technique for 4D CBCT∕CT using a parallel computing framework called MapReduce. We show the utility of MapReduce for solving large-scale medical physics problems in a cloud computing environment.

METHODS

In this work, we accelerated the Feldcamp-Davis-Kress (FDK) algorithm by porting it to Hadoop, an open-source MapReduce implementation. Gated phases from a 4DCT scans were reconstructed independently. Following the MapReduce formalism, Map functions were used to filter and backproject subsets of projections, and Reduce function to aggregate those partial backprojection into the whole volume. MapReduce automatically parallelized the reconstruction process on a large cluster of computer nodes. As a validation, reconstruction of a digital phantom and an acquired CatPhan 600 phantom was performed on a commercial cloud computing environment using the proposed 4D CBCT∕CT reconstruction algorithm.

RESULTS

Speedup of reconstruction time is found to be roughly linear with the number of nodes employed. For instance, greater than 10 times speedup was achieved using 200 nodes for all cases, compared to the same code executed on a single machine. Without modifying the code, faster reconstruction is readily achievable by allocating more nodes in the cloud computing environment. Root mean square error between the images obtained using MapReduce and a single-threaded reference implementation was on the order of 10(-7). Our study also proved that cloud computing with MapReduce is fault tolerant: the reconstruction completed successfully with identical results even when half of the nodes were manually terminated in the middle of the process.

CONCLUSIONS

An ultrafast, reliable and scalable 4D CBCT∕CT reconstruction method was developed using the MapReduce framework. Unlike other parallel computing approaches, the parallelization and speedup required little modification of the original reconstruction code. MapReduce provides an efficient and fault tolerant means of solving large-scale computing problems in a cloud computing environment.

摘要

目的

四维 CT(4DCT)和锥形束 CT(CBCT)广泛应用于放射治疗,以实现肿瘤靶区的精确定义和定位。然而,由于处理的数据量很大,高分辨率和动态图像重建需要大量的计算。为了在临床中有效地使用这些成像技术,需要高性能计算。本工作的目的是开发一种新的超快、可扩展和可靠的 4D CBCT/CT 图像重建技术,该技术使用一种称为 MapReduce 的并行计算框架。我们展示了 MapReduce 在云计算环境中解决大规模医学物理问题的实用性。

方法

在这项工作中,我们通过将 Feldcamp-Davis-Kress(FDK)算法移植到 Hadoop(一种开源的 MapReduce 实现)中,从而加速了该算法。对 4DCT 扫描的门控相位进行独立重建。按照 MapReduce 的形式,Map 函数用于过滤和反向投影子集,Reduce 函数则将这些部分反向投影聚合到整个体积中。MapReduce 自动在大型计算机节点集群上并行化重建过程。作为验证,我们在商业云计算环境中使用所提出的 4D CBCT/CT 重建算法,对数字体模和 Catphan 600 体模进行了重建。

结果

重建时间的加速与所使用的节点数量大致呈线性关系。例如,与在单台机器上运行的相同代码相比,对于所有情况,使用 200 个节点时可以实现超过 10 倍的加速。在云计算环境中,通过分配更多的节点,无需修改代码即可轻松实现更快的重建。使用 MapReduce 获得的图像与单线程参考实现之间的均方根误差约为 10(-7)。我们的研究还证明,使用 MapReduce 的云计算是容错的:即使在中间手动终止一半节点的情况下,重建也能成功完成,并且结果完全相同。

结论

使用 MapReduce 框架开发了一种超快、可靠和可扩展的 4D CBCT/CT 重建方法。与其他并行计算方法不同,原始重建代码只需要很少的修改就可以实现并行化和加速。MapReduce 为在云计算环境中解决大规模计算问题提供了一种高效且容错的方法。

相似文献

2
High temporal resolution and streak-free four-dimensional cone-beam computed tomography.
Phys Med Biol. 2008 Oct 21;53(20):5653-73. doi: 10.1088/0031-9155/53/20/006. Epub 2008 Sep 24.
4
Streaking artifacts reduction in four-dimensional cone-beam computed tomography.
Med Phys. 2008 Oct;35(10):4649-59. doi: 10.1118/1.2977736.
5
Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
Phys Med Biol. 2015 Dec 7;60(23):9157-83. doi: 10.1088/0031-9155/60/23/9157. Epub 2015 Nov 12.
7
Evaluation of a 4D cone-beam CT reconstruction approach using a simulation framework.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5729-32. doi: 10.1109/IEMBS.2009.5333125.
8
Parallel SART algorithm of linear scan cone-beam CT for fixed pipeline.
J Xray Sci Technol. 2009;17(3):221-32. doi: 10.3233/XST-2009-0224.

引用本文的文献

1
Review of in vivo optical molecular imaging and sensing from x-ray excitation.
J Biomed Opt. 2021 Jan;26(1). doi: 10.1117/1.JBO.26.1.010902.
3
Advanced X-ray CT scanning can boost tree ring research for earth system sciences.
Ann Bot. 2019 Nov 15;124(5):837-847. doi: 10.1093/aob/mcz126.
4
Analytical modeling and feasibility study of a multi-GPU cloud-based server (MGCS) framework for non-voxel-based dose calculations.
Int J Comput Assist Radiol Surg. 2017 Apr;12(4):669-680. doi: 10.1007/s11548-016-1473-5. Epub 2016 Aug 25.
5
A scoping review of cloud computing in healthcare.
BMC Med Inform Decis Mak. 2015 Mar 19;15:17. doi: 10.1186/s12911-015-0145-7.
7
Accelerated barrier optimization compressed sensing (ABOCS) for CT reconstruction with improved convergence.
Phys Med Biol. 2014 Apr 7;59(7):1801-14. doi: 10.1088/0031-9155/59/7/1801. Epub 2014 Mar 14.
8
Enabling large-scale biomedical analysis in the cloud.
Biomed Res Int. 2013;2013:185679. doi: 10.1155/2013/185679. Epub 2013 Oct 31.
10
Toward a web-based real-time radiation treatment planning system in a cloud computing environment.
Phys Med Biol. 2013 Sep 21;58(18):6525-40. doi: 10.1088/0031-9155/58/18/6525. Epub 2013 Sep 3.

本文引用的文献

1
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce.
J Biomed Opt. 2011 Dec;16(12):125003. doi: 10.1117/1.3656964.
2
GPU computing in medical physics: a review.
Med Phys. 2011 May;38(5):2685-97. doi: 10.1118/1.3578605.
4
Computational solutions to large-scale data management and analysis.
Nat Rev Genet. 2010 Sep;11(9):647-57. doi: 10.1038/nrg2857.
5
CloudBurst: highly sensitive read mapping with MapReduce.
Bioinformatics. 2009 Jun 1;25(11):1363-9. doi: 10.1093/bioinformatics/btp236. Epub 2009 Apr 8.
7
Feature-based rectal contour propagation from planning CT to cone beam CT.
Med Phys. 2008 Oct;35(10):4450-9. doi: 10.1118/1.2975230.
8
GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration.
Phys Med Biol. 2007 Oct 7;52(19):5771-83. doi: 10.1088/0031-9155/52/19/003. Epub 2007 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验