Suppr超能文献

在云计算环境中构建基于网络的实时放射治疗计划系统。

Toward a web-based real-time radiation treatment planning system in a cloud computing environment.

机构信息

Department of Radiation Oncology, Stanford University, Stanford, CA 94305 USA.

出版信息

Phys Med Biol. 2013 Sep 21;58(18):6525-40. doi: 10.1088/0031-9155/58/18/6525. Epub 2013 Sep 3.

Abstract

To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an 'on-demand' basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture's constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm(2)) from the Varian TrueBeam(TM) STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are identical to PC-based IMRT and VMAT plans, confirming the reliability of the cloud computing platform. This cloud computing infrastructure has been established for a radiation treatment planning. It substantially improves the speed of inverse planning and makes future on-treatment adaptive re-planning possible.

摘要

为了充分利用强度调制放射治疗(IMRT)和容积调制弧形治疗(VMAT)的潜在剂量学优势,需要采用深入的方法来提供高效的计算方法。这需要结合临床相关的器官特异性限制、蒙特卡罗(MC)剂量计算和大规模计划优化。本文介绍了我们在云计算环境(CCE)中构建基于网络的实时放射治疗计划系统的初步步骤。使用带有主节点(名为 m2.xlarge,包含 17.1GB 内存、两个虚拟核,每个核具有 3.25 个 EC2 计算单元、420GB 实例存储、64 位平台)的 Amazon Elastic Compute Cloud(EC2)作为云计算的骨干来进行剂量计算和计划优化。主节点能够按需扩展工作人员。采用 MC 剂量计算通过并行任务生成精确的射束剂量核。强度调制优化使用全变差正则化(TVR)并以分布式方式为 CCE 中的每个初始射束方向生成分段常数通量图。优化后的通量图被分割成可交付的孔径。使用制造商的约束,通过迭代修正每个孔径的形状,使其成为一系列圆弧。从 EC2 输出的计划文件发送到简单存储服务。对三个已识别的临床癌症治疗计划进行了研究,以评估新计划平台在使用来自瓦里安 TrueBeam(TM)STx 直线加速器的 6MV 无均整过滤器射束(40×40cm2)时的性能。在本研究中考虑的头颈部、肺部和前列腺癌病例中,CCE 可将剂量核计算和计划优化的速度提高多达 14 倍。所提出的系统依赖于能够提供并行和分布式计算基础架构的 CCE。来自云计算的结果计划与基于 PC 的 IMRT 和 VMAT 计划相同,这证实了云计算平台的可靠性。已经为放射治疗计划建立了这个云计算基础设施。它大大提高了逆向规划的速度,并为未来的治疗中自适应重新规划提供了可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验