使用点、2D 和 3D 剂量测量技术委托制造小场生物辐照器。
Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques.
机构信息
Department of Radiation Oncology, Duke University, Durham, North Carolina 27710, USA.
出版信息
Med Phys. 2011 Dec;38(12):6754-62. doi: 10.1118/1.3663675.
PURPOSE
To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths.
METHODS
Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS∕PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS∕PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min.
RESULTS
Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT2 and PRESAGE® measured OFs, PDDs, and profiles.
CONCLUSIONS
The combination of independent 2D and 3D measurements was found to be valuable to ensure accurate and comprehensive commissioning. Film measurements were time consuming and challenging due to the difficulty of film alignment in small fields. PRESAGE® 3D measurements were comprehensive and efficient, because alignment errors are negligible, and all parameters for multiple fields could be obtained from a single dosimeter and scan. However, achieving accurate superficial data (within 4 mm) is not yet feasible due to optical surface artifacts.
目的
为研究目的委托 Precision x-Ray, Inc. 生产的小型 XRad225Cx 型生物辐照器。该系统产生 225 kVp X 射线束,并配备准直器,可产生 1 至 40 毫米大小的方形和圆形辐射场。这项工作结合了点、2D 和 3D 测量,以确定输出因子(OF)、百分深度剂量(PDD)和多个深度的剂量分布。
方法
使用了三个独立的剂量测量系统:离子室(一个农杆菌室和一个微电离室)、2D EBT2 放射化学胶片和新型 3D 剂量测量系统(DLOS∕PRESAGE®)。参考点剂量率和输出因子是通过在空气中使用离子室测量得到的,对于 13 毫米以下的场,使用 TG61 的形式。在固体水中,使用 EBT2 胶片测量确定了所有场大小的 PDD、分布和输出因子。在非常小的场中,胶片对准存在挑战,因此需要对几个胶片 PDD 曲线进行缩放校正。还使用 3D DLOS∕PRESAGE®系统确定了 PDD、分布和输出因子,该系统在 20 分钟的扫描时间内生成各向同性的 0.2 毫米数据。
结果
当场从 40 毫米减小到 13 毫米时,通过离子室确定的表面输出因子逐渐下降约 9%。对于最小的场 EBT 观察到更显著的下降,分别为 2.5 毫米和 1 毫米场的 18%和 42%。对于<20 毫米的场(可提供 3D 数据),PRESAGE®和胶片输出因子之间具有良好的一致性,平均偏差为 2.2%(范围为 1%-4%)。2 厘米深度处的 PDD 值从 40 毫米场的约 72%变化到 1 毫米场的约 55%。EBT 和 PRESAGE®的 PDD 在典型治疗区域(1-4 厘米)内差异在 3%以内。在更深的深度处,EBT 曲线略陡(5 厘米处为 2.5%)。这些结果表明,离子室、EBT2 和 PRESAGE® 测量的 OF、PDD 和分布之间具有良好的总体一致性。
结论
独立的 2D 和 3D 测量的结合被发现对于确保准确和全面的委托是有价值的。由于在小场中胶片对准存在困难,胶片测量既耗时又具有挑战性。PRESAGE®3D 测量全面且高效,因为对准误差可以忽略不计,并且可以从单个剂量计和扫描中获得多个场的所有参数。然而,由于光学表面伪影,目前还无法实现精确的表面数据(在 4 毫米以内)。