Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
J Nanobiotechnology. 2011 Dec 8;9:57. doi: 10.1186/1477-3155-9-57.
Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate.
Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast.
Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies.
使用数字微镜器件进行计算机控制的定向光合成 DNA 微阵列——无掩模阵列合成 (MAS)——已被证明在商业和实验室规模上都取得了成功。MAS 中的化学合成循环与传统的寡核苷酸固相合成非常相似,但微阵列的复杂性和玻璃衬底上独特的合成动力学需要仔细调整参数并对合成循环进行独特的修改,以获得最佳的脱保护和亚磷酰胺偶联。此外,由于散射和衍射引起的非故意脱保护会引入插入错误,这会对整体错误率产生重大影响。
逐步亚磷酰胺偶联产率得到了极大的提高,现在可与寡核苷酸固相合成中获得的产率相媲美。在复杂长寡核苷酸阵列的合成中延长化学暴露时间会导致最终平均产率降低,但仍很高,接近 99%。新的合成化学包括在最后一步之前消除标准氧化,以及改进的偶联和光脱保护。由于杂散光引起的偶联插入是用于基因组装的寡核苷酸合成中序列质量的限制因素。到目前为止,衍射和局部耀斑是光对比度损失的最大贡献者。
无掩模阵列合成是一种高效、通用的方法,可用于合成用于杂交和其他基于分子结合的实验的高密度长寡核苷酸阵列。对于需要高序列纯度的应用,例如基因组装,衍射和耀斑仍然是重大障碍,但可以通过简单的实验策略大大降低。