Division of Infectious Diseases, Department of Medicine, Inflammatory Diseases Institute, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599--7292, USA.
Gastroenterology. 2012 Mar;142(3):654-63. doi: 10.1053/j.gastro.2011.11.035. Epub 2011 Dec 7.
BACKGROUND & AIMS: It is a challenge to develop direct-acting antiviral agents that target the nonstructural protein 3/4A protease of hepatitis C virus because resistant variants develop. Ketoamide compounds, designed to mimic the natural protease substrate, have been developed as inhibitors. However, clinical trials have revealed rapid selection of resistant mutants, most of which are considered to be pre-existing variants.
We identified residues near the ketoamide-binding site in x-ray structures of the genotype 1a protease, co-crystallized with boceprevir or a telaprevir-like ligand, and then identified variants at these positions in 219 genotype-1 sequences from a public database. We used side-chain modeling to assess the potential effects of these variants on the interaction between ketoamide and the protease, and compared these results with the phenotypic effects on ketoamide resistance, RNA replication capacity, and infectious virus yields in a cell culture model of infection.
Thirteen natural binding-site variants with potential for ketoamide resistance were identified at 10 residues in the protease, near the ketoamide binding site. Rotamer analysis of amino acid side-chain conformations indicated that 2 variants (R155K and D168G) could affect binding of telaprevir more than boceprevir. Measurements of antiviral susceptibility in cell-culture studies were consistent with this observation. Four variants (ie, Q41H, I132V, R155K, and D168G) caused low-to-moderate levels of ketoamide resistance; 3 of these were highly fit (Q41H, I132V, and R155K).
Using a comprehensive sequence and structure-based analysis, we showed how natural variation in the hepatitis C virus protease nonstructural protein 3/4A sequences might affect susceptibility to first-generation direct-acting antiviral agents. These findings increase our understanding of the molecular basis of ketoamide resistance among naturally existing viral variants.
开发针对丙型肝炎病毒非结构蛋白 3/4A 蛋白酶的直接作用抗病毒药物具有挑战性,因为会产生耐药变异体。酮酰胺化合物被设计为模仿天然蛋白酶底物,已被开发为抑制剂。然而,临床试验表明,耐药突变体的选择速度很快,其中大多数被认为是预先存在的变异体。
我们在与 boceprevir 或 telaprevir 样配体共结晶的基因型 1a 蛋白酶的 X 射线结构中鉴定了酮酰胺结合位点附近的残基,然后在公共数据库中鉴定了 219 个基因型 1 序列中这些位置的变体。我们使用侧链建模来评估这些变体对酮酰胺与蛋白酶之间相互作用的潜在影响,并将这些结果与酮酰胺耐药性、RNA 复制能力以及感染细胞培养模型中感染性病毒产量的表型影响进行比较。
在蛋白酶的 10 个残基附近的酮酰胺结合位点处,在 13 个天然结合位点变体中鉴定出具有酮酰胺耐药潜力的变体。氨基酸侧链构象的旋转分析表明,2 个变体(R155K 和 D168G)可能比 boceprevir 更能影响 telaprevir 的结合。细胞培养研究中的抗病毒敏感性测量结果与这一观察结果一致。4 个变体(即 Q41H、I132V、R155K 和 D168G)导致低至中度水平的酮酰胺耐药性;其中 3 个具有高度适应性(Q41H、I132V 和 R155K)。
使用全面的序列和结构分析,我们展示了丙型肝炎病毒蛋白酶非结构蛋白 3/4A 序列中的自然变异如何影响对第一代直接作用抗病毒药物的敏感性。这些发现增加了我们对天然存在的病毒变异体中酮酰胺耐药的分子基础的理解。