Suppr超能文献

选择 microRNAs 对海胆的早期发育至关重要。

Select microRNAs are essential for early development in the sea urchin.

机构信息

Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA.

出版信息

Dev Biol. 2012 Feb 1;362(1):104-13. doi: 10.1016/j.ydbio.2011.11.015. Epub 2011 Dec 3.

Abstract

microRNAs (miRNAs) are small noncoding RNAs that mediate post-transcriptional gene regulation and have emerged as essential regulators of many developmental events. The transcriptional network during early embryogenesis of the purple sea urchin, Strongylocentrotus purpuratus, is well described and can serve as an excellent model to test functional contributions of miRNAs in embryogenesis. We examined the loss of function phenotypes of major components of the miRNA biogenesis pathway. Inhibition of de novo synthesis of Drosha and Dicer in the embryo led to consistent developmental defects, a failure to gastrulate, and embryonic lethality, including changes in the steady state levels of transcription factors and signaling molecules involved in germ layer specification. We annotated and profiled small RNA expression from the ovary and several early embryonic stages by deep sequencing followed by computational analysis. miRNAs as well as a large population of putative piRNAs (piwi-interacting RNAs) had dynamic accumulation profiles through early development. Defects in morphogenesis caused by loss of Drosha could be rescued with four miRNAs. Taken together our results indicate that post-transcriptional gene regulation directed by miRNAs is functionally important for early embryogenesis and is an integral part of the early embryonic gene regulatory network in S. purpuratus.

摘要

微小 RNA(miRNA)是一种小型非编码 RNA,可介导转录后基因调控,并且已成为许多发育事件的重要调控因子。紫色海胆(Strongylocentrotus purpuratus)早期胚胎发生的转录网络已得到很好的描述,可作为测试 miRNA 在胚胎发生中功能贡献的极佳模型。我们检查了 miRNA 生物发生途径的主要成分丧失功能的表型。在胚胎中抑制 Drosha 和 Dicer 的从头合成会导致一致的发育缺陷,原肠胚形成失败以及胚胎致死,包括涉及胚层特化的转录因子和信号分子的稳态水平的变化。我们通过深度测序和计算分析,对卵巢和几个早期胚胎阶段的小 RNA 表达进行注释和分析。miRNA 以及大量假定的 piRNA(piwi 相互作用 RNA)在早期发育过程中具有动态积累谱。由 Drosha 缺失引起的形态发生缺陷可以通过四种 miRNA 进行挽救。总之,我们的结果表明,miRNA 指导的转录后基因调控对于早期胚胎发生是功能上重要的,并且是 S. purpuratus 早期胚胎基因调控网络的组成部分。

相似文献

1
Select microRNAs are essential for early development in the sea urchin.
Dev Biol. 2012 Feb 1;362(1):104-13. doi: 10.1016/j.ydbio.2011.11.015. Epub 2011 Dec 3.
2
microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1.
Dev Biol. 2021 Apr;472:98-114. doi: 10.1016/j.ydbio.2021.01.008. Epub 2021 Jan 20.
4
MicroRNA-dependent roles of Drosha and Pasha in the Drosophila larval ovary morphogenesis.
Dev Biol. 2016 Aug 15;416(2):312-23. doi: 10.1016/j.ydbio.2016.06.026. Epub 2016 Jun 20.
5
Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus.
Biochem Biophys Res Commun. 2013 Oct 25;440(3):413-8. doi: 10.1016/j.bbrc.2013.09.094. Epub 2013 Oct 1.
6
RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.
PLoS One. 2011;6(12):e29217. doi: 10.1371/journal.pone.0029217. Epub 2011 Dec 28.
7
Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics.
PLoS Genet. 2015 Jul 31;11(7):e1005435. doi: 10.1371/journal.pgen.1005435. eCollection 2015 Jul.
8
CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
Dev Biol. 2021 Apr;472:85-97. doi: 10.1016/j.ydbio.2021.01.003. Epub 2021 Jan 19.
10
Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus.
Dev Biol. 2014 Jan 15;385(2):160-7. doi: 10.1016/j.ydbio.2013.11.019. Epub 2013 Nov 26.

引用本文的文献

3
Transcription of microRNAs is regulated by developmental signaling pathways and transcription factors.
Front Cell Dev Biol. 2024 Apr 24;12:1356589. doi: 10.3389/fcell.2024.1356589. eCollection 2024.
5
Dynamic Evolution of Repetitive Elements and Chromatin States in Subspecies.
Genes (Basel). 2024 Jan 11;15(1):89. doi: 10.3390/genes15010089.
7
microRNA-124 directly suppresses Nodal and Notch to regulate mesodermal development.
Dev Biol. 2023 Oct;502:50-62. doi: 10.1016/j.ydbio.2023.06.017. Epub 2023 Jul 5.
10
microRNA-124 regulates Notch and NeuroD1 to mediate transition states of neuronal development.
Dev Neurobiol. 2023 Jan;83(1-2):3-27. doi: 10.1002/dneu.22902. Epub 2022 Nov 23.

本文引用的文献

1
miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades.
Nucleic Acids Res. 2012 Jan;40(1):37-52. doi: 10.1093/nar/gkr688. Epub 2011 Sep 12.
2
A gene regulatory network controlling the embryonic specification of endoderm.
Nature. 2011 May 29;474(7353):635-9. doi: 10.1038/nature10100.
3
Non-coding RNAs as regulators of embryogenesis.
Nat Rev Genet. 2011 Feb;12(2):136-49. doi: 10.1038/nrg2904.
4
microRNA complements in deuterostomes: origin and evolution of microRNAs.
Evol Dev. 2011 Jan-Feb;13(1):15-27. doi: 10.1111/j.1525-142X.2010.00452.x.
5
Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo.
Nature. 2010 Oct 28;467(7319):1128-32. doi: 10.1038/nature09465. Epub 2010 Oct 17.
6
Mammalian microRNAs predominantly act to decrease target mRNA levels.
Nature. 2010 Aug 12;466(7308):835-40. doi: 10.1038/nature09267.
7
Regulation of mRNA translation and stability by microRNAs.
Annu Rev Biochem. 2010;79:351-79. doi: 10.1146/annurev-biochem-060308-103103.
8
Dicer is required for the normal development of sea urchin, Hemicentrotus pulcherrimus.
Zoolog Sci. 2010 Jun;27(6):477-86. doi: 10.2108/zsj.27.477.
9
Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology.
Wiley Interdiscip Rev Syst Biol Med. 2009 Sep-Oct;1(2):237-246. doi: 10.1002/wsbm.24.
10
Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease.
Science. 2010 Apr 16;328(5976):327-34. doi: 10.1126/science.1182374. Epub 2010 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验