Suppr超能文献

微小RNA-31通过直接抑制Eve和Wnt1来调节骨骼生成。

microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1.

作者信息

Sampilo Nina Faye, Stepicheva Nadezda A, Song Jia L

机构信息

Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.

Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.

出版信息

Dev Biol. 2021 Apr;472:98-114. doi: 10.1016/j.ydbio.2021.01.008. Epub 2021 Jan 20.

Abstract

microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.

摘要

微小RNA(miRNA)在多种生物学过程中发挥关键作用,包括胚胎发育和细胞的生理功能。进化保守的微小RNA - 31(miR - 31)已被发现参与癌症、骨形成和淋巴发育。我们先前发现,在海胆中,敲低(KD)miR - 31的胚胎背腹连杆缩短,成骨初级间充质细胞(PMC)模式异常,Vegf3表达域移位并扩大。Vegf3本身不包含miR - 31结合位点;然而,我们确定其上游调节因子Eve和Wnt1被miR - 31直接抑制。去除miR - 31对Eve和Wnt1的抑制导致骨骼和PMC模式缺陷,类似于miR - 31 KD表型。此外,去除miR - 31对Eve和Wnt1的抑制会导致Veg1外胚层基因表达的扩展和前移,包括囊胚中的Vegf3。这表明miR - 31通过直接抑制Eve和Wnt1间接调节Vegf3表达。此外,去除miR - 31对Eve的抑制足以导致成骨缺陷,揭示了Eve在骨骼发生和PMC模式形成中的新调节作用。总体而言,本研究提出了miR - 31通过对Wnt信号配体以及内胚层和外胚层基因调控网络的转录因子进行交叉调节来调控骨骼发生和PMC模式形成的分子机制。

相似文献

1
microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1.
Dev Biol. 2021 Apr;472:98-114. doi: 10.1016/j.ydbio.2021.01.008. Epub 2021 Jan 20.
2
microRNA-31 modulates skeletal patterning in the sea urchin embryo.
Development. 2015 Nov 1;142(21):3769-80. doi: 10.1242/dev.127969. Epub 2015 Sep 23.
4
5
Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
Gene Expr Patterns. 2014 Nov;16(2):93-103. doi: 10.1016/j.gep.2014.10.002. Epub 2014 Oct 16.
6
CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
Dev Biol. 2021 Apr;472:85-97. doi: 10.1016/j.ydbio.2021.01.003. Epub 2021 Jan 19.
7
Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling.
Development. 2012 May;139(9):1662-9. doi: 10.1242/dev.075051. Epub 2012 Mar 21.
9
The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
Development. 2009 Apr;136(7):1179-89. doi: 10.1242/dev.032300.
10
Select microRNAs are essential for early development in the sea urchin.
Dev Biol. 2012 Feb 1;362(1):104-13. doi: 10.1016/j.ydbio.2011.11.015. Epub 2011 Dec 3.

引用本文的文献

1
miR-31-mediated local translation at the mitotic spindle is important for early development.
Development. 2024 Sep 1;151(17). doi: 10.1242/dev.202619. Epub 2024 Sep 5.
4
microRNA-124 directly suppresses Nodal and Notch to regulate mesodermal development.
Dev Biol. 2023 Oct;502:50-62. doi: 10.1016/j.ydbio.2023.06.017. Epub 2023 Jul 5.
6
Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo.
Dev Dyn. 2022 Aug;251(8):1322-1339. doi: 10.1002/dvdy.474. Epub 2022 Apr 22.

本文引用的文献

3
The evolution of a new cell type was associated with competition for a signaling ligand.
PLoS Biol. 2019 Sep 18;17(9):e3000460. doi: 10.1371/journal.pbio.3000460. eCollection 2019 Sep.
5
Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12353-12362. doi: 10.1073/pnas.1902126116. Epub 2019 May 31.
6
Analysis of microRNA functions.
Methods Cell Biol. 2019;151:323-334. doi: 10.1016/bs.mcb.2018.10.005. Epub 2018 Dec 11.
8
Functions and mechanisms of microRNA-31 in human cancers.
Biomed Pharmacother. 2018 Dec;108:1162-1169. doi: 10.1016/j.biopha.2018.09.132. Epub 2018 Oct 1.
10
Metazoan MicroRNAs.
Cell. 2018 Mar 22;173(1):20-51. doi: 10.1016/j.cell.2018.03.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验