Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
Dev Biol. 2024 Apr;508:123-137. doi: 10.1016/j.ydbio.2024.01.010. Epub 2024 Jan 28.
microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.
microRNAs 是进化上保守的非编码 RNA,可指导靶转录本的转录后调控。在脊椎动物中,microRNA-1(miR-1)在肌肉中表达,并被发现对脊椎动物血管生成起关键的调节作用,这一过程被提议类似于海胆骨骼发生。结果表明,miR-1 抑制剂和 miR-1 模拟物注射的幼虫具有明显较少的富含 F-肌动蛋白的环咽肌纤维和更少的肠道收缩。此外,miR-1 调节骨骼发生的原间充质细胞(PMCs)的定位和海胆胚胎的骨骼发生。有趣的是,miR-1 的功能获得导致更严重的 PMC 模式化和骨骼分支缺陷,比其功能丧失更严重。研究结果表明,miR-1 直接抑制骨骼发生基因调控网络的 Ets1/2、Tbr 和 VegfR7,以及 Nodal 和 Wnt1 信号成分。本研究确定了 miR-1 影响骨骼发生和肌肉形成的潜在靶标,并有助于更深入地了解 miR-1 在发育过程中的功能。