Suppr超能文献

基于各向异性分布函数黎曼结构的高角分辨率弥散成像的仿射度量映射。

Diffeomorphic metric mapping of high angular resolution diffusion imaging based on Riemannian structure of orientation distribution functions.

机构信息

Division of Bioengineering, National University of Singapore, Singapore.

出版信息

IEEE Trans Med Imaging. 2012 May;31(5):1021-33. doi: 10.1109/TMI.2011.2178253. Epub 2011 Dec 6.

Abstract

In this paper, we propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by orientation distribution functions (ODFs). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains consistent with the surrounding anatomical structure. To this end, we first review the Riemannian manifold of ODFs. We then define the reorientation of an ODF when an affine transformation is applied and subsequently, define the diffeomorphic group action to be applied on the ODF based on this reorientation. We incorporate the Riemannian metric of ODFs for quantifying the similarity of two HARDI images into a variational problem defined under the large deformation diffeomorphic metric mapping framework. We finally derive the gradient of the cost function in both Riemannian spaces of diffeomorphisms and the ODFs, and present its numerical implementation. Both synthetic and real brain HARDI data are used to illustrate the performance of our registration algorithm.

摘要

在本文中,我们提出了一种新的大变形仿射配准算法,用于对齐具有方向分布函数(ODF)的高角分辨率扩散图像(HARDI)。我们提出的算法在空间体积域中寻找两个 ODF 场之间的最佳大变形仿射变换,并同时局部重新定向 ODF,使其与周围的解剖结构保持一致。为此,我们首先回顾了 ODF 的黎曼流形。然后,我们定义了当应用仿射变换时 ODF 的重新定向,随后,根据该重新定向定义要应用于 ODF 的仿射群作用。我们将 ODF 的黎曼度量纳入用于量化两个 HARDI 图像相似性的变分问题中,该问题定义在大变形仿射度量映射框架下。最后,我们在微分同胚和 ODF 的黎曼空间中推导出代价函数的梯度,并给出其数值实现。我们使用合成和真实大脑 HARDI 数据来演示我们的配准算法的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验