Suppr超能文献

沙眼衣原体筛查试验的评估:与患者感染状态算法相关的偏倚。

Evaluation of screening tests for detecting Chlamydia trachomatis: bias associated with the patient-infected-status algorithm.

机构信息

Division of STD Prevention, National Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.

出版信息

Epidemiology. 2012 Jan;23(1):72-82. doi: 10.1097/EDE.0b013e31823b506b.

Abstract

In recent years, the evaluation of nucleic acid amplification tests (NAATs) for detecting Chlamydia trachomatis and Neisseria gonorrhea is based on a methodology called the patient-infected-status algorithm (PISA). In the simplest version of PISA, 4 test-specimen combinations (comparator tests) are used to define the gold standard. If a person shows a positive result by any 2 or more of these 4 comparator tests, the person is classified as infected; otherwise, the person is considered to be uninfected. A new test is then compared with this diagnostic algorithm. PISA-based sensitivity and specificity estimates of nucleic acid amplification tests have been published in the medical and microbiologic literature and have been included in FDA-approved package inserts of NAATs for detecting C. trachomatis. Using simulations, we compare 2 versions of the patient-infected-status algorithm with latent-class models and an imperfect gold standard. We show that the PISA can produce highly biased test-performance parameter estimates. In a series of simulated scenarios, none of the 95% confidence intervals for PISA-based estimates of sensitivity and prevalence contained the true values. In addition, the PISA-based estimates of sensitivity and specificity change markedly as the true prevalence changes. We recommend that PISA should not be used for estimating the sensitivity and specificity of tests.

摘要

近年来,核酸扩增检测(NAAT)用于检测沙眼衣原体和淋病奈瑟菌的评估是基于一种称为患者感染状态算法(PISA)的方法。在 PISA 的最简单版本中,使用 4 种测试标本组合(对照测试)来定义金标准。如果一个人通过这 4 种对照测试中的任意 2 种或更多种检测呈阳性,则该人被归类为感染;否则,该人被认为未感染。然后将新的测试与该诊断算法进行比较。基于 PISA 的核酸扩增检测的敏感性和特异性估计值已在医学和微生物学文献中发表,并已包含在 FDA 批准的用于检测沙眼衣原体的 NAAT 产品说明书中。我们使用模拟来比较 2 种版本的患者感染状态算法与潜在类别模型和不完美的金标准。我们表明,PISA 可以产生高度有偏的测试性能参数估计值。在一系列模拟场景中,基于 PISA 的敏感性和患病率的估计值的 95%置信区间均未包含真实值。此外,PISA 基于敏感性和特异性的估计值随着真实患病率的变化而显著变化。我们建议不应使用 PISA 来估计测试的敏感性和特异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验