Suppr超能文献

基于纵向测量性状的转录组关联分析的集成随机插补。

Stochastic imputation for integrated transcriptome association analysis of a longitudinally measured trait.

机构信息

Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA, USA.

Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.

出版信息

Stat Methods Med Res. 2020 Apr;29(4):1167-1180. doi: 10.1177/0962280219852720. Epub 2019 Jun 7.

Abstract

The mechanistic pathways linking genetic polymorphisms and complex disease traits remain largely uncharacterized. At the same time, expansive new transcriptome data resources offer unprecedented opportunity to unravel the mechanistic underpinnings of complex disease associations. Two-stage strategies involving conditioning on a single, penalized regression imputation for transcriptome association analysis have been described for cross-sectional traits. In this manuscript, we propose an alternative two-stage approach based on stochastic regression imputation that additionally incorporates error in the predictive model. Application of a bootstrap procedure offers flexibility when a closed form predictive distribution is not available. The two-stage strategy is also generalized to longitudinally measured traits, using a linear mixed effects modeling framework and a composite test statistic to evaluate whether the genetic component of gene-level expression modifies the biomarker trajectory over time. Simulations studies are performed to evaluate relative performance with respect to type-1 error rates, coverage, estimation error, and power under a range of conditions. A case study is presented to investigate the association between whole blood expression for each of five inflammasome genes with inflammatory response over time after endotoxin challenge.

摘要

遗传多态性与复杂疾病特征之间的机制途径在很大程度上仍未得到阐明。与此同时,广泛的新转录组数据资源为揭示复杂疾病关联的机制基础提供了前所未有的机会。已经描述了涉及在转录组关联分析中对单个惩罚回归推断进行条件处理的两阶段策略,用于横断面特征。在本文中,我们提出了一种基于随机回归推断的替代两阶段方法,该方法还额外包含了预测模型中的误差。当不存在封闭形式的预测分布时,应用引导程序过程提供了灵活性。该两阶段策略也被推广到纵向测量的特征,使用线性混合效应建模框架和组合检验统计量来评估基因水平表达的遗传成分是否随时间改变生物标志物轨迹。在一系列条件下进行模拟研究,以评估在 1 型错误率、覆盖率、估计误差和功效方面的相对性能。提出了一个案例研究,以调查全血中五个炎症小体基因的表达与内毒素挑战后随时间推移的炎症反应之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64f8/8848832/0cf578ac3660/nihms-1707872-f0001.jpg

相似文献

10
A likelihood-based approach to transcriptome association analysis.基于可能性的转录组关联分析方法。
Stat Med. 2019 Apr 15;38(8):1357-1373. doi: 10.1002/sim.8040. Epub 2018 Dec 4.

本文引用的文献

2
A likelihood-based approach to transcriptome association analysis.基于可能性的转录组关联分析方法。
Stat Med. 2019 Apr 15;38(8):1357-1373. doi: 10.1002/sim.8040. Epub 2018 Dec 4.
6
Sensitivity analysis and power for instrumental variable studies.工具变量研究的敏感性分析与效能
Biometrics. 2018 Dec;74(4):1150-1160. doi: 10.1111/biom.12873. Epub 2018 Mar 31.
9
Estimating the causal tissues for complex traits and diseases.估计复杂性状和疾病的因果组织。
Nat Genet. 2017 Dec;49(12):1676-1683. doi: 10.1038/ng.3981. Epub 2017 Oct 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验