Suppr超能文献

从遗传相互作用伙伴的早期随机变化预测突变结果。

Predicting mutation outcome from early stochastic variation in genetic interaction partners.

机构信息

EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation and Universitat Pompeu Fabra, Barcelona 08003, Spain.

出版信息

Nature. 2011 Dec 7;480(7376):250-3. doi: 10.1038/nature10665.

Abstract

Many mutations, including those that cause disease, only have a detrimental effect in a subset of individuals. The reasons for this are usually unknown, but may include additional genetic variation and environmental risk factors. However, phenotypic discordance remains even in the absence of genetic variation, for example between monozygotic twins, and incomplete penetrance of mutations is frequent in isogenic model organisms in homogeneous environments. Here we propose a model for incomplete penetrance based on genetic interaction networks. Using Caenorhabditis elegans as a model system, we identify two compensation mechanisms that vary among individuals and influence mutation outcome. First, feedback induction of an ancestral gene duplicate differs across individuals, with high expression masking the effects of a mutation. This supports the hypothesis that redundancy is maintained in genomes to buffer stochastic developmental failure. Second, during normal embryonic development we find that there is substantial variation in the induction of molecular chaperones such as Hsp90 (DAF-21). Chaperones act as promiscuous buffers of genetic variation, and embryos with stronger induction of Hsp90 are less likely to be affected by an inherited mutation. Simultaneously quantifying the variation in these two independent responses allows the phenotypic outcome of a mutation to be more accurately predicted in individuals. Our model and methodology provide a framework for dissecting the causes of incomplete penetrance. Further, the results establish that inter-individual variation in both specific and more general buffering systems combine to determine the outcome inherited mutations in each individual.

摘要

许多突变,包括导致疾病的突变,仅在一部分个体中具有不利影响。其原因通常未知,但可能包括额外的遗传变异和环境风险因素。然而,即使在没有遗传变异的情况下,表型差异仍然存在,例如在同卵双胞胎之间,并且在同质环境中的同基因模式生物中,突变的不完全外显率很常见。在这里,我们提出了一个基于遗传相互作用网络的不完全外显率模型。我们使用秀丽隐杆线虫作为模型系统,确定了两种在个体之间变化并影响突变结果的补偿机制。首先,祖先基因重复的反馈诱导在个体之间存在差异,高表达掩盖了突变的影响。这支持了冗余在基因组中被维持以缓冲随机发育失败的假说。其次,在正常胚胎发育过程中,我们发现分子伴侣(如 Hsp90(DAF-21))的诱导存在很大差异。伴侣作为遗传变异的混杂缓冲剂,Hsp90 诱导更强的胚胎不太可能受到遗传突变的影响。同时定量这两种独立反应的变化,可以更准确地预测个体中突变的表型结果。我们的模型和方法为剖析不完全外显率的原因提供了一个框架。此外,结果表明,特定和更一般的缓冲系统在个体中结合决定了遗传突变的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验