Stanford Institute of Neuro-Innovation and Translational Neuroscience and Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305-5453, USA.
J Neurosci. 2011 Dec 7;31(49):17764-71. doi: 10.1523/JNEUROSCI.3964-11.2011.
Blockade of synaptic activity induces homeostatic plasticity, in part by stimulating synthesis of all-trans retinoic acid (RA), which in turn increases AMPA receptor synthesis. However, the synaptic signal that triggers RA synthesis remained unknown. Using multiple activity-blockade protocols that induce homeostatic synaptic plasticity, here we show that RA synthesis is activated whenever postsynaptic Ca(2+) entry is significantly decreased and that RA is required for upregulation of synaptic strength under these homeostatic plasticity conditions, suggesting that Ca(2+) plays an inhibitory role in RA synthesis. Consistent with this notion, we demonstrate that both transient Ca(2+) depletion by membrane-permeable Ca(2+) chelators and chronic blockage of L-type Ca(2+)-channels induces RA synthesis. Moreover, the source of dendritic Ca(2+) entry that regulates RA synthesis is not specific because mild depolarization with KCl is sufficient to reverse synaptic scaling induced by L-type Ca(2+)-channel blocker. By expression of a dihydropyridine-insensitive L-type Ca(2+) channel, we further show that RA acts cell autonomously to modulate synaptic transmission. Our findings suggest that, in synaptically active neurons, modest "basal" levels of postsynaptic Ca(2+) physiologically suppress RA synthesis, whereas in synaptically inactive neurons, decreases in the resting Ca(2+) levels induce homeostatic plasticity by stimulating synthesis of RA that then acts in a cell-autonomous manner to increase AMPA receptor function.
阻断突触活动会诱导同型稳态可塑性,部分原因是刺激全反式视黄酸(RA)的合成,而 RA 又会增加 AMPA 受体的合成。然而,触发 RA 合成的突触信号仍然未知。在这里,我们使用多种可诱导同型稳态突触可塑性的活性阻断方案,表明只要突触后 Ca²⁺内流显著减少,RA 合成就会被激活,并且在这些同型稳态可塑性条件下,RA 是增强突触强度所必需的,这表明 Ca²⁺在 RA 合成中起抑制作用。与这一观点一致,我们证明了通过膜通透性 Ca²⁺螯合剂进行的瞬时 Ca²⁺耗竭和慢性阻断 L 型 Ca²⁺通道都会诱导 RA 合成。此外,调节 RA 合成的树突 Ca²⁺内流的来源不是特定的,因为用 KCl 进行轻度去极化足以逆转由 L 型 Ca²⁺通道阻滞剂诱导的突触缩放。通过表达一种对二氢吡啶不敏感的 L 型 Ca²⁺通道,我们进一步表明 RA 以细胞自主的方式调节突触传递。我们的发现表明,在突触活跃的神经元中,适度的“基础”水平的突触后 Ca²⁺会在生理上抑制 RA 合成,而在突触不活跃的神经元中,静息 Ca²⁺水平的降低通过刺激 RA 的合成来诱导同型稳态可塑性,然后 RA 以细胞自主的方式发挥作用,增加 AMPA 受体的功能。