Fusy Eric, Clote Peter
Laboratoire d'Informatiques (LIX), Ecole Polytechnique, 91128 , Palaiseau, France,
J Math Biol. 2014 Jan;68(1-2):341-75. doi: 10.1007/s00285-012-0631-9. Epub 2012 Dec 22.
It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366∙n-3/2∙2.618034n. Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are 1.07427∙n-3/2∙2.35467n many saturated structures for a sequence of length n. In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles).
斯坦因(Stein)和沃特曼(Waterman)的一个经典结果表明,RNA二级结构的渐近数量为1.104366∙n^(-3/2)∙2.618034^n。受RNA二级结构形成动力学的启发,我们感兴趣的是确定相对于特定能量模型而言局部最优的二级结构的渐近数量。在努西诺夫(Nussinov)能量模型中,每个碱基对为结构的能量贡献-1,局部最优结构恰好是饱和结构,我们之前已经表明,对于长度为n的序列,渐近地存在1.07427∙n^(-3/2)∙2.35467^n个饱和结构。在本文中,我们考虑碱基堆积能量模型,它是努西诺夫模型的一个温和变体,其中每个堆积的碱基对为结构的能量贡献-1。相对于碱基堆积能量模型的局部最优结构恰好是那些茎不能延伸的二级结构。此类结构最早由埃弗斯(Evers)和吉耶里希(Giegerich)考虑,他们描述了一种动态规划算法来枚举所有局部最优结构。在本文中,我们应用枚举组合学的方法来计算此类结构的渐近数量。此外,我们考虑了带有注释的单链、堆积核苷酸(悬垂)的二级结构的类似组合问题。