Suppr超能文献

基于新相似度搜索的脑胶质瘤分级。

New similarity search based glioma grading.

机构信息

Department of Neuroradiology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.

出版信息

Neuroradiology. 2012 Aug;54(8):829-37. doi: 10.1007/s00234-011-0988-2. Epub 2011 Dec 14.

Abstract

INTRODUCTION

MR-based differentiation between low- and high-grade gliomas is predominately based on contrast-enhanced T1-weighted images (CE-T1w). However, functional MR sequences as perfusion- and diffusion-weighted sequences can provide additional information on tumor grade. Here, we tested the potential of a recently developed similarity search based method that integrates information of CE-T1w and perfusion maps for non-invasive MR-based glioma grading.

METHODS

We prospectively included 37 untreated glioma patients (23 grade I/II, 14 grade III gliomas), in whom 3T MRI with FLAIR, pre- and post-contrast T1-weighted, and perfusion sequences was performed. Cerebral blood volume, cerebral blood flow, and mean transit time maps as well as CE-T1w images were used as input for the similarity search. Data sets were preprocessed and converted to four-dimensional Gaussian Mixture Models that considered correlations between the different MR sequences. For each patient, a so-called tumor feature vector (= probability-based classifier) was defined and used for grading. Biopsy was used as gold standard, and similarity based grading was compared to grading solely based on CE-T1w.

RESULTS

Accuracy, sensitivity, and specificity of pure CE-T1w based glioma grading were 64.9%, 78.6%, and 56.5%, respectively. Similarity search based tumor grading allowed differentiation between low-grade (I or II) and high-grade (III) gliomas with an accuracy, sensitivity, and specificity of 83.8%, 78.6%, and 87.0%.

CONCLUSION

Our findings indicate that integration of perfusion parameters and CE-T1w information in a semi-automatic similarity search based analysis improves the potential of MR-based glioma grading compared to CE-T1w data alone.

摘要

简介

基于磁共振的低级别和高级别胶质瘤的区分主要基于增强 T1 加权图像(CE-T1w)。然而,灌注和弥散加权序列等功能磁共振序列可以提供肿瘤分级的额外信息。在这里,我们测试了一种最近开发的基于相似性搜索的方法的潜力,该方法整合了 CE-T1w 和灌注图的信息,用于非侵入性基于磁共振的胶质瘤分级。

方法

我们前瞻性地纳入了 37 名未经治疗的胶质瘤患者(23 级 I/II,14 级 III 级),其中进行了 3T MRI 检查,包括 FLAIR、对比前和对比后 T1 加权和灌注序列。脑血容量、脑血流和平均通过时间图以及 CE-T1w 图像被用作相似性搜索的输入。数据集进行了预处理,并转换为考虑不同磁共振序列之间相关性的四维高斯混合模型。对于每个患者,定义了一个所谓的肿瘤特征向量(=基于概率的分类器),并用于分级。活检作为金标准,基于相似性的分级与仅基于 CE-T1w 的分级进行比较。

结果

纯 CE-T1w 基于胶质瘤分级的准确性、敏感性和特异性分别为 64.9%、78.6%和 56.5%。基于相似性搜索的肿瘤分级能够区分低级别(I 级或 II 级)和高级别(III 级)胶质瘤,准确性、敏感性和特异性分别为 83.8%、78.6%和 87.0%。

结论

我们的研究结果表明,与仅基于 CE-T1w 数据相比,将灌注参数和 CE-T1w 信息整合到半自动基于相似性搜索的分析中,可以提高基于磁共振的胶质瘤分级的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验