Invivo Corporation, Philips Healthcare, Gainesville, Florida, USA.
Magn Reson Med. 2012 Sep;68(3):772-82. doi: 10.1002/mrm.23293. Epub 2011 Dec 9.
Because dynamic MR images are often sparse in x-f domain, k-t space compressed sensing (k-t CS) has been proposed for highly accelerated dynamic MRI. When a multichannel coil is used for acquisition, the combination of partially parallel imaging and k-t CS can improve the accuracy of reconstruction. In this work, an efficient combination method is presented, which is called k-t sparse Generalized GRAPPA fOr Wider readout Line. One fundamental aspect of this work is to apply partially parallel imaging and k-t CS sequentially. A partially parallel imaging technique using a Generalized GRAPPA fOr Wider readout Line operator is adopted before k-t CS reconstruction to decrease the reduction factor in a computationally efficient way while preserving temporal resolution. Channel combination and relative sensitivity maps are used in the flexible virtual coil scheme to alleviate the k-t CS computational load with increasing number of channels. Using k-t FOCUSS as a specific example of k-t CS, the experiments with Cartesian and radial data sets demonstrate that k-t sparse Generalized GRAPPA fOr Wider readout Line can produce results with two times lower root-mean-square error than conventional channel-by-channel k-t CS while consuming up to seven times less computational cost.
由于动态 MR 图像在 x-f 域中通常是稀疏的,因此已经提出了 k-t 空间压缩感知 (k-t CS) 用于高速动态 MRI。当使用多通道线圈进行采集时,部分并行成像和 k-t CS 的组合可以提高重建的准确性。在这项工作中,提出了一种有效的组合方法,称为 k-t 稀疏广义 GRAPPA fOr 更宽的读出线。这项工作的一个基本方面是顺序应用部分并行成像和 k-t CS。在 k-t CS 重建之前采用使用广义 GRAPPA fOr 更宽的读出线算子的部分并行成像技术,以在保留时间分辨率的同时以计算有效的方式降低减少因子。在灵活的虚拟线圈方案中使用通道组合和相对灵敏度图来减轻随着通道数量增加的 k-t CS 计算负担。使用 k-t FOCUSS 作为 k-t CS 的特定示例,笛卡尔和径向数据集的实验表明,k-t 稀疏广义 GRAPPA fOr 更宽的读出线可以产生比传统的逐通道 k-t CS 低两倍均方根误差的结果,同时计算成本降低多达七倍。