Suppr超能文献

动脉生长和重塑的生物力学模型。

Mechanobiological model of arterial growth and remodeling.

机构信息

Department of Biomedical Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.

出版信息

Biomech Model Mechanobiol. 2018 Feb;17(1):87-101. doi: 10.1007/s10237-017-0946-y. Epub 2017 Aug 19.

Abstract

A coupled agent-based model (ABM) and finite element analysis (FEA) computational framework is developed to study the interplay of bio-chemo-mechanical factors in blood vessels and their role in maintaining homeostasis. The agent-based model implements the power of REPAST Simphony libraries and adapts its environment for biological simulations. Coupling a continuum-level model (FEA) to a cellular-level model (ABM) has enabled this computational framework to capture the response of blood vessels to increased or decreased levels of growth factors, proteases and other signaling molecules (on the micro scale) as well as altered blood pressure. Performance of the model is assessed by simulating porcine left anterior descending artery under normotensive conditions and transient increases in blood pressure and by analyzing sensitivity of the model to variations in the rule parameters of the ABM. These simulations proved that the model is stable under normotensive conditions and can recover from transient increases in blood pressure. Sensitivity studies revealed that the model is most sensitive to variations in the concentration of growth factors that affect cellular proliferation and regulate extracellular matrix composition (mainly collagen).

摘要

我们开发了一个基于代理的模型(ABM)和有限元分析(FEA)计算框架,以研究血管中生物化学机械因素的相互作用及其在维持体内平衡中的作用。基于代理的模型实现了 REPAST Simphony 库的强大功能,并适应了生物模拟的环境。将连续体水平模型(FEA)与细胞水平模型(ABM)耦合,使这个计算框架能够捕捉血管对生长因子、蛋白酶和其他信号分子(在微观尺度上)水平升高或降低以及血压变化的反应。通过模拟正常血压条件下和血压短暂升高时的猪左前降支动脉,并分析模型对 ABM 规则参数变化的敏感性,来评估模型的性能。这些模拟证明,该模型在正常血压条件下是稳定的,并且可以从血压的短暂升高中恢复。敏感性研究表明,该模型对影响细胞增殖和调节细胞外基质组成(主要是胶原蛋白)的生长因子浓度的变化最为敏感。

相似文献

1
Mechanobiological model of arterial growth and remodeling.
Biomech Model Mechanobiol. 2018 Feb;17(1):87-101. doi: 10.1007/s10237-017-0946-y. Epub 2017 Aug 19.
2
Tissue Engineering: A Coupled Agent-Based Finite Element Approach.
Tissue Eng Part C Methods. 2019 Nov;25(11):641-654. doi: 10.1089/ten.TEC.2019.0103. Epub 2019 Sep 20.
3
A new finite-element shell model for arterial growth and remodeling after stent implantation.
Int J Numer Method Biomed Eng. 2020 Jan;36(1):e3282. doi: 10.1002/cnm.3282. Epub 2019 Nov 26.
4
A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes.
Comput Methods Biomech Biomed Engin. 2014;17(8):813-28. doi: 10.1080/10255842.2012.716830. Epub 2012 Sep 12.
6
A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering.
Biomech Model Mechanobiol. 2012 Mar;11(3-4):363-77. doi: 10.1007/s10237-011-0316-0. Epub 2011 May 31.
7
Spatial scaling in multiscale models: methods for coupling agent-based and finite-element models of wound healing.
Biomech Model Mechanobiol. 2019 Oct;18(5):1297-1309. doi: 10.1007/s10237-019-01145-1. Epub 2019 Apr 9.
8
Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
J Biomech Eng. 2009 Oct;131(10):101006. doi: 10.1115/1.3192144.
9
Growth and residual stresses of arterial walls.
J Theor Biol. 2013 Nov 21;337:80-8. doi: 10.1016/j.jtbi.2013.08.008. Epub 2013 Aug 19.

引用本文的文献

3
Multiscale computational model predicts how environmental changes and treatments affect microvascular remodeling in fibrotic disease.
PNAS Nexus. 2024 Dec 7;4(1):pgae551. doi: 10.1093/pnasnexus/pgae551. eCollection 2025 Jan.
4
Guidelines for mechanistic modeling and analysis in cardiovascular research.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H473-H503. doi: 10.1152/ajpheart.00766.2023. Epub 2024 Jun 21.
6
Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension.
J Mech Behav Biomed Mater. 2022 Sep;133:105325. doi: 10.1016/j.jmbbm.2022.105325. Epub 2022 Jun 29.
7
Multiscale Modeling of Vascular Remodeling Induced by Wall Shear Stress.
Front Physiol. 2022 Jan 27;12:808999. doi: 10.3389/fphys.2021.808999. eCollection 2021.
8
Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models.
Front Bioeng Biotechnol. 2021 Nov 2;9:744560. doi: 10.3389/fbioe.2021.744560. eCollection 2021.
10
Computational model of damage-induced growth in soft biological tissues considering the mechanobiology of healing.
Biomech Model Mechanobiol. 2021 Aug;20(4):1297-1315. doi: 10.1007/s10237-021-01445-5. Epub 2021 Mar 26.

本文引用的文献

1
A Multiscale Computational Framework to Understand Vascular Adaptation.
J Comput Sci. 2015 May 1;8:32-47. doi: 10.1016/j.jocs.2015.02.002.
3
Mechanotransduction and extracellular matrix homeostasis.
Nat Rev Mol Cell Biol. 2014 Dec;15(12):802-12. doi: 10.1038/nrm3896. Epub 2014 Oct 22.
4
Computational modeling of hypertensive growth in the human carotid artery.
Comput Mech. 2014 Jun;53(6):1183-1196. doi: 10.1007/s00466-013-0959-z.
6
Application of a mechanobiological simulation technique to stents used clinically.
J Biomech. 2013 Mar 15;46(5):918-24. doi: 10.1016/j.jbiomech.2012.12.014. Epub 2013 Feb 8.
8
A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes.
Comput Methods Biomech Biomed Engin. 2014;17(8):813-28. doi: 10.1080/10255842.2012.716830. Epub 2012 Sep 12.
9
Vascular remodeling in hypertension: mechanisms and treatment.
Hypertension. 2012 Feb;59(2):367-74. doi: 10.1161/HYPERTENSIONAHA.111.187021. Epub 2011 Dec 27.
10
A Multilayered Wall Model of Arterial Growth and Remodeling.
Mech Mater. 2012 Jan 1;44:110-119. doi: 10.1016/j.mechmat.2011.05.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验