Suppr超能文献

具有截断损失函数的稳健惩罚逻辑回归。

Robust penalized logistic regression with truncated loss functions.

作者信息

Park Seo Young, Liu Yufeng

机构信息

Department of Health Studies, Chicago, IL 60615, USA.

出版信息

Can J Stat. 2011 Jun 1;39(2):300-323. doi: 10.1002/cjs.10105.

Abstract

The penalized logistic regression (PLR) is a powerful statistical tool for classification. It has been commonly used in many practical problems. Despite its success, since the loss function of the PLR is unbounded, resulting classifiers can be sensitive to outliers. To build more robust classifiers, we propose the robust PLR (RPLR) which uses truncated logistic loss functions, and suggest three schemes to estimate conditional class probabilities. Connections of the RPLR with some other existing work on robust logistic regression have been discussed. Our theoretical results indicate that the RPLR is Fisher consistent and more robust to outliers. Moreover, we develop estimated generalized approximate cross validation (EGACV) for the tuning parameter selection. Through numerical examples, we demonstrate that truncating the loss function indeed yields better performance in terms of classification accuracy and class probability estimation.

摘要

惩罚逻辑回归(PLR)是一种强大的分类统计工具。它已被广泛应用于许多实际问题中。尽管取得了成功,但由于PLR的损失函数是无界的,因此所得分类器可能对异常值敏感。为了构建更稳健的分类器,我们提出了使用截断逻辑损失函数的稳健PLR(RPLR),并提出了三种估计条件类概率的方案。讨论了RPLR与其他一些关于稳健逻辑回归的现有工作之间的联系。我们的理论结果表明,RPLR是Fisher一致的,并且对异常值更具稳健性。此外,我们开发了用于调整参数选择的估计广义近似交叉验证(EGACV)。通过数值例子,我们证明了截断损失函数在分类准确率和类概率估计方面确实产生了更好的性能。

相似文献

3
4
Adaptively weighted large-margin angle-based classifiers.自适应加权的基于大间隔角度的分类器。
J Multivar Anal. 2018 Jul;166:282-299. doi: 10.1016/j.jmva.2018.03.004. Epub 2018 Mar 15.
7
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
8
Robust Variable Selection with Exponential Squared Loss.基于指数平方损失的稳健变量选择
J Am Stat Assoc. 2013 Apr 1;108(502):632-643. doi: 10.1080/01621459.2013.766613.
9
Deformation of log-likelihood loss function for multiclass boosting.多类提升的对数似然损失函数的变形。
Neural Netw. 2010 Sep;23(7):843-64. doi: 10.1016/j.neunet.2010.05.009. Epub 2010 May 26.
10
Robust Model-Free Multiclass Probability Estimation.强大的无模型多类概率估计
J Am Stat Assoc. 2010 Mar 1;105(489):424-436. doi: 10.1198/jasa.2010.tm09107.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验