实时等离子体工艺故障分类。

Real-time fault classification for plasma processes.

机构信息

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

Sensors (Basel). 2011;11(7):7037-54. doi: 10.3390/s110707037. Epub 2011 Jul 6.

Abstract

Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703-5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success.

摘要

等离子体工艺工具通常价值数百万美元,常用于半导体制造的刻蚀工艺。如果等离子体工艺因某些工艺故障而停止,将会降低生产效率并增加成本。为了使产品/晶圆的产量和工具的生产效率最大化,需要在等离子体反应器中及时有效地进行故障过程检测。故障事件的分类可以帮助用户快速识别故障过程,从而节省等离子体工具的停机时间。在这项工作中,我们使用光谱发射光谱学(OES)作为原位过程监测的计量传感器。通过光谱带将其分为 12 个不同的匹配率,我们之前的工作(Yang, R.; Chen, R.S. Sensors 2010, 10, 5703-5723)中的匹配率指标用于检测故障过程。基于匹配数据,通过本研究中开发的新方法实现了等离子体故障的实时分类。通过实验验证了新的故障分类方法。从实验结果可以得出结论,所提出的方法是可行的,因为故障事件转移的分类总体准确率为 27 次中有 28 次或约 96.4%是成功的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12ca/3231656/2eec788fa2e9/sensors-11-07037f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索