Centro de Investigación en Micro y Nanotecnología, Universidad Veracruzana, Calzada Ruiz Cortines 455, 94292, Boca del Río, Veracruz, Mexico.
Sensors (Basel). 2011;11(9):8203-26. doi: 10.3390/s110908203. Epub 2011 Aug 25.
Multilayered microresonators commonly use sensitive coating or piezoelectric layers for detection of mass and gas. Most of these microresonators have a variable cross-section that complicates the prediction of their fundamental resonant frequency (generally of the bending mode) through conventional analytical models. In this paper, we present an analytical model to estimate the first resonant frequency and deflection curve of single-clamped multilayered microresonators with variable cross-section. The analytical model is obtained using the Rayleigh and Macaulay methods, as well as the Euler-Bernoulli beam theory. Our model is applied to two multilayered microresonators with piezoelectric excitation reported in the literature. Both microresonators are composed by layers of seven different materials. The results of our analytical model agree very well with those obtained from finite element models (FEMs) and experimental data. Our analytical model can be used to determine the suitable dimensions of the microresonator's layers in order to obtain a microresonator that operates at a resonant frequency necessary for a particular application.
多层微谐振器通常使用敏感涂层或压电层来检测质量和气体。这些微谐振器中的大多数都具有可变的横截面,这使得通过传统的分析模型来预测它们的基本共振频率(通常是弯曲模式)变得复杂。在本文中,我们提出了一种分析模型来估计具有可变横截面的单端固支多层微谐振器的第一共振频率和挠度曲线。该分析模型是使用瑞利和麦考利方法以及欧拉-伯努利梁理论获得的。我们的模型应用于文献中报道的两个具有压电激励的多层微谐振器。这两个微谐振器都是由七层不同材料组成的。我们的分析模型的结果与从有限元模型(FEM)和实验数据获得的结果非常吻合。我们的分析模型可用于确定微谐振器层的合适尺寸,以便获得在特定应用所需的共振频率下工作的微谐振器。