Suppr超能文献

基于多层谐振器的用于办公楼空调通风口的压电振动能量收集微器件的机电建模

Electromechanical Modeling of a Piezoelectric Vibration Energy Harvesting Microdevice Based on Multilayer Resonator for Air Conditioning Vents at Office Buildings.

作者信息

Elvira-Hernández Ernesto A, Uscanga-González Luis A, de León Arxel, López-Huerta Francisco, Herrera-May Agustín L

机构信息

Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico.

Faculty of Mechanical and Electrical Engineering, Universidad Veracruzana, Xalapa, Veracruz 91000, Mexico.

出版信息

Micromachines (Basel). 2019 Mar 26;10(3):211. doi: 10.3390/mi10030211.

Abstract

Piezoelectric vibration energy harvesting (pVEH) microdevices can convert the mechanical vibrations to electrical voltages. In the future, these microdevices can provide an alternative to replace the electrochemical batteries, which cause contamination due to their toxic materials. We present the electromechanical modeling of a pVEH microdevice with a novel resonant structure for air conditioning vents at office buildings. This electromechanical modeling includes different multilayers and cross-sections of the microdevice resonator as well as the air damping. This microdevice uses a flexible substrate and it does not include toxics materials. The microdevice has a resonant structure formed by multilayer beams and U-shape proof mass of UV-resin (730 μm thickness). The multilayer beams contain flexible substrates (160 μm thickness) of polyethylene terephthalate (PET), two aluminum electrodes (100 nm thickness), and a ZnO layer (2 μm thickness). An analytical model is developed to predict the first bending resonant frequency and deflections of the microdevice. This model considers the Rayleigh and Macaulay methods, and the Euler-Bernoulli beam theory. In addition, the electromechanical behavior of the microdevice is determined through the finite element method (FEM) models. In these FEM models, the output power of the microdevice is obtained using different sinusoidal accelerations. The microdevice has a resonant frequency of 60.3 Hz, a maximum deflection of 2.485 mm considering an acceleration of 1.5 m/s², an output voltage of 2.854 V and generated power of 37.45 μW with a load resistance of 217.5 kΩ. An array of pVEH microdevices connected in series could be used to convert the displacements of air conditioning vents at office buildings into voltages for electronic devices and sensors.

摘要

压电振动能量采集(pVEH)微型器件能够将机械振动转换为电压。未来,这些微型器件可提供一种替代方案,以取代因含有有毒材料而造成污染的电化学电池。我们展示了一种用于办公楼空调通风口的具有新型谐振结构的pVEH微型器件的机电模型。该机电模型包括微型器件谐振器的不同多层结构和横截面以及空气阻尼。这种微型器件使用柔性基板,且不包含有毒材料。该微型器件具有由多层梁和厚度为730μm的紫外光固化树脂U形质量块形成的谐振结构。多层梁包含厚度为160μm的聚对苯二甲酸乙二酯(PET)柔性基板、两个厚度为100nm的铝电极以及一个厚度为2μm的ZnO层。开发了一个分析模型来预测微型器件的第一弯曲谐振频率和挠度。该模型考虑了瑞利法和麦考利法以及欧拉 - 伯努利梁理论。此外,通过有限元法(FEM)模型确定微型器件的机电行为。在这些FEM模型中,使用不同的正弦加速度来获得微型器件的输出功率。该微型器件的谐振频率为60.3Hz,在加速度为1.5m/s²时最大挠度为2.485mm,输出电压为2.854V,在负载电阻为217.5kΩ时产生的功率为37.45μW。串联连接的pVEH微型器件阵列可用于将办公楼空调通风口的位移转换为电子设备和传感器的电压。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b86/6471001/2c9c509360a1/micromachines-10-00211-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验