Suppr超能文献

用于低功耗设备的具有多层横截面的基于振动的压电纳米发电机的机电建模

Electromechanical Modeling of Vibration-Based Piezoelectric Nanogenerator with Multilayered Cross-Section for Low-Power Consumption Devices.

作者信息

Elvira-Hernández Ernesto A, Anaya-Zavaleta Juan C, Martínez-Cisneros Eustaquio, López-Huerta Francisco, Aguilera-Cortés Luz Antonio, Herrera-May Agustín L

机构信息

Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico.

Departamento de Ingeniería Mecánica, DICIS, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Salamanca 36885, Mexico.

出版信息

Micromachines (Basel). 2020 Sep 17;11(9):860. doi: 10.3390/mi11090860.

Abstract

Piezoelectric nanogenerators can convert energy from ambient vibrations into electrical energy. In the future, these nanogenerators could substitute conventional electrochemical batteries to supply electrical energy to consumer electronics. The optimal design of nanogenerators is fundamental in order to achieve their best electromechanical behavior. We present the analytical electromechanical modeling of a vibration-based piezoelectric nanogenerator composed of a double-clamped beam with five multilayered cross-sections. This nanogenerator design has a central seismic mass (910 μm thickness) and substrate (125 μm thickness) of polyethylene terephthalate (PET) as well as a zinc oxide film (100 nm thickness) at the bottom of each end. The zinc oxide (ZnO) films have two aluminum electrodes (100 nm thickness) through which the generated electrical energy is extracted. The analytical electromechanical modeling is based on the Rayleigh method, Euler-Bernoulli beam theory and Macaulay method. In addition, finite element method (FEM) models are developed to estimate the electromechanical behavior of the nanogenerator. These FEM models consider air damping at atmospheric pressure and optimum load resistance. The analytical modeling results agree well with respect to those of FEM models. For applications under accelerations in -direction of 2.50 m/s and an optimal load resistance of 32,458 Ω, the maximum output power and output power density of the nanogenerator at resonance (119.9 Hz) are 50.44 μW and 82.36 W/m, respectively. This nanogenerator could be used to convert the ambient mechanical vibrations into electrical energy and supply low-power consumption devices.

摘要

压电纳米发电机可以将环境振动能转化为电能。未来,这些纳米发电机有望替代传统的电化学电池,为消费电子产品供电。纳米发电机的优化设计对于实现其最佳机电性能至关重要。我们提出了一种基于振动的压电纳米发电机的解析机电模型,该发电机由一个具有五个多层横截面的双端夹紧梁组成。这种纳米发电机设计采用聚对苯二甲酸乙二醇酯(PET)制成的中心地震质量块(厚度910μm)和基底(厚度125μm),以及在每一端底部的氧化锌薄膜(厚度100nm)。氧化锌(ZnO)薄膜上有两个铝电极(厚度100nm),通过它们提取产生的电能。解析机电模型基于瑞利法、欧拉-伯努利梁理论和麦考利法。此外,还开发了有限元方法(FEM)模型来估计纳米发电机的机电性能。这些FEM模型考虑了大气压力下的空气阻尼和最佳负载电阻。解析建模结果与FEM模型的结果吻合良好。对于在-2.50m/s²加速度方向和32458Ω最佳负载电阻下的应用,纳米发电机在共振(119.9Hz)时的最大输出功率和输出功率密度分别为50.44μW和82.36W/m²。这种纳米发电机可用于将环境机械振动转化为电能,并为低功耗设备供电。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6be/7569856/efa9cfc6072c/micromachines-11-00860-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验