Cardinal Trevor R, Struthers Kyle R, Kesler Thomas J, Yocum Matthew D, Kurjiaka David T, Hoying James B
Biomedical Engineering, California Polytechnic State University San Luis Obispo, CA, USA.
Front Physiol. 2011 Dec 6;2:91. doi: 10.3389/fphys.2011.00091. eCollection 2011.
Vasodilation of lower leg arterioles is impaired in animal models of chronic peripheral ischemia. In addition to arterioles, feed arteries are a critical component of the vascular resistance network, accounting for as much as 50% of the pressure drop across the arterial circulation. Despite the critical importance of feed arteries in blood flow control, the impact of ischemia on feed artery vascular reactivity is unknown. At 14 days following unilateral resection of the femoral-saphenous artery-vein pair, functional vasodilation of the profunda femoris artery was severely impaired, 11 ± 9 versus 152 ± 22%. Although endothelial and smooth muscle-dependent vasodilation were both impaired in ischemic arteries compared to control arteries (Ach: 40 ± 14 versus 81 ± 11%, SNP: 43 ± 12 versus and 85 ± 11%), the responses to acetylcholine and sodium nitroprusside were similar, implicating impaired smooth muscle-dependent vasodilation. Conversely, vasoconstriction responses to norepinephrine were not different between ischemic and control arteries, -68 ± 3 versus -66 ± 3%, indicating that smooth muscle cells were functional following the ischemic insult. Finally, maximal dilation responses to acetylcholine, ex vivo, were significantly impaired in the ischemic artery compared to control, 71 ± 9 versus 97 ± 2%, despite a similar generation of myogenic tone to the same intravascular pressure (80 mmHg). These data indicate that ischemia impairs feed artery vasodilation by impairing the responsiveness of the vascular wall to vasodilating stimuli. Future studies to examine the mechanistic basis for the impact of ischemia on vascular reactivity or treatment strategies to improve vascular reactivity following ischemia could provide the foundation for an alternative therapeutic paradigm for peripheral arterial occlusive disease.
在慢性外周缺血的动物模型中,小腿小动脉的血管舒张功能受损。除小动脉外,供血动脉是血管阻力网络的关键组成部分,占动脉循环压力降的50%之多。尽管供血动脉在血流控制中至关重要,但缺血对供血动脉血管反应性的影响尚不清楚。在单侧切除股-隐动脉-静脉对14天后,股深动脉的功能性血管舒张严重受损,为11±9%,而对照组为152±22%。与对照动脉相比,缺血动脉中内皮依赖性和平滑肌依赖性血管舒张均受损(乙酰胆碱:40±14%对81±11%,硝普钠:43±12%对85±11%),对乙酰胆碱和硝普钠的反应相似,提示平滑肌依赖性血管舒张受损。相反,缺血动脉和对照动脉对去甲肾上腺素的血管收缩反应无差异,分别为-68±3%和-66±3%,表明平滑肌细胞在缺血损伤后仍具有功能。最后,尽管在相同血管内压力(80 mmHg)下产生的肌源性张力相似,但与对照相比,离体缺血动脉对乙酰胆碱的最大舒张反应显著受损,为71±9%,而对照组为97±2%。这些数据表明,缺血通过损害血管壁对血管舒张刺激的反应性来损害供血动脉的血管舒张。未来研究缺血对血管反应性影响的机制基础或改善缺血后血管反应性的治疗策略,可为外周动脉闭塞性疾病的替代治疗模式提供基础。