Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
BMC Biotechnol. 2011 Dec 13;11:121. doi: 10.1186/1472-6750-11-121.
Physical mapping of transgenic insertions by Fluorescence in situ Hybridization (FISH) is a reliable and cost-effective technique. Chromosomal assignment is commonly achieved either by concurrent G-banding or by a multi-color FISH approach consisting of iteratively co-hybridizing the transgenic sequence of interest with one or more chromosome-specific probes at a time, until the location of the transgenic insertion is identified.
Here we report a technical development for fast chromosomal assignment of transgenic insertions at the single cell level in mouse and rat models. This comprises a simplified 'single denaturation mixed hybridization' procedure that combines multi-color karyotyping by Multiplex FISH (M-FISH), for simultaneous and unambiguous identification of all chromosomes at once, and the use of a Quantum Dot (QD) conjugate for the transgene detection.
Although the exploitation of the unique optical properties of QD nanocrystals, such as photo-stability and brightness, to improve FISH performance generally has been previously investigated, to our knowledge this is the first report of a purpose-designed molecular cytogenetic protocol in which the combined use of QDs and standard organic fluorophores is specifically tailored to assist gene transfer technology.
荧光原位杂交(FISH)的转基因插入物的物理作图是一种可靠且具有成本效益的技术。染色体的分配通常通过同时的 G 带或通过多色 FISH 方法来实现,该方法包括通过一次反复共杂交感兴趣的转基因序列与一个或多个染色体特异性探针,直到鉴定出转基因插入的位置。
在这里,我们报告了在小鼠和大鼠模型中在单细胞水平上快速进行转基因插入物的染色体分配的技术发展。这包括简化的“单一变性混合杂交”程序,该程序通过多重荧光原位杂交(M-FISH)进行多色核型分析,可同时且明确无误地一次识别所有染色体,并使用量子点(QD)缀合物进行转基因检测。
尽管先前已经研究了利用 QD 纳米晶体的独特光学特性(如光稳定性和亮度)来改善 FISH 性能,但据我们所知,这是第一个专门设计的分子细胞遗传学方案的报告,其中 QD 和标准有机荧光团的联合使用专门针对辅助基因转移技术。