Suppr超能文献

天哪,你得了流感?生物监测共享健康信息分析。

OMG U got flu? Analysis of shared health messages for bio-surveillance.

作者信息

Collier Nigel, Son Nguyen Truong, Nguyen Ngoc Mai

机构信息

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,Tokyo, Japan.

出版信息

J Biomed Semantics. 2011 Oct 6;2 Suppl 5(Suppl 5):S9. doi: 10.1186/2041-1480-2-S5-S9.

Abstract

BACKGROUND

Micro-blogging services such as Twitter offer the potential to crowdsource epidemics in real-time. However, Twitter posts ('tweets') are often ambiguous and reactive to media trends. In order to ground user messages in epidemic response we focused on tracking reports of self-protective behaviour such as avoiding public gatherings or increased sanitation as the basis for further risk analysis.

RESULTS

We created guidelines for tagging self protective behaviour based on Jones and Salathé (2009)'s behaviour response survey. Applying the guidelines to a corpus of 5283 Twitter messages related to influenza like illness showed a high level of inter-annotator agreement (kappa 0.86). We employed supervised learning using unigrams, bigrams and regular expressions as features with two supervised classifiers (SVM and Naive Bayes) to classify tweets into 4 self-reported protective behaviour categories plus a self-reported diagnosis. In addition to classification performance we report moderately strong Spearman's Rho correlation by comparing classifier output against WHO/NREVSS laboratory data for A(H1N1) in the USA during the 2009-2010 influenza season.

CONCLUSIONS

The study adds to evidence supporting a high degree of correlation between pre-diagnostic social media signals and diagnostic influenza case data, pointing the way towards low cost sensor networks. We believe that the signals we have modelled may be applicable to a wide range of diseases.

摘要

背景

诸如推特这样的微博服务提供了对流行病进行实时众包的潜力。然而,推特帖子(“推文”)往往含糊不清,且对媒体趋势有反应。为了将用户信息与疫情应对联系起来,我们专注于追踪诸如避免公众集会或加强卫生措施等自我保护行为的报告,以此作为进一步风险分析的基础。

结果

我们根据琼斯和萨拉泰(2009年)的行为反应调查创建了标记自我保护行为的指南。将这些指南应用于一个包含5283条与流感样疾病相关的推特消息的语料库,结果显示注释者之间的一致性很高(卡帕值为0.86)。我们使用单字、双字和正则表达式作为特征,通过两个监督分类器(支持向量机和朴素贝叶斯)进行监督学习,将推文分类为4种自我报告的保护行为类别以及一种自我报告的诊断。除了分类性能外,我们还通过将分类器输出与2009 - 2010年流感季节美国A(H1N1)的世卫组织/国家呼吸道和肠道病毒监测系统实验室数据进行比较,报告了中等强度的斯皮尔曼等级相关系数。

结论

该研究进一步证明了诊断前社交媒体信号与诊断性流感病例数据之间存在高度相关性,为低成本传感器网络指明了方向。我们认为我们所建模的信号可能适用于多种疾病。

相似文献

6
Twitter mining for fine-grained syndromic surveillance.用于细粒度症状监测的推特挖掘
Artif Intell Med. 2014 Jul;61(3):153-63. doi: 10.1016/j.artmed.2014.01.002. Epub 2014 Jan 31.

引用本文的文献

本文引用的文献

1
Landscape of international event-based biosurveillance.基于事件的国际生物监测概况。
Emerg Health Threats J. 2010;3:e3. doi: 10.3134/ehtj.10.003. Epub 2010 Feb 19.
3
9
Avian influenza risk perception, Europe and Asia.欧洲和亚洲的禽流感风险认知
Emerg Infect Dis. 2007 Feb;13(2):290-3. doi: 10.3201/eid1302.060303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验