Suppr超能文献

迈向突发疫情事件的跨语言警报

Towards cross-lingual alerting for bursty epidemic events.

作者信息

Collier Nigel

机构信息

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,Tokyo, Japan.

出版信息

J Biomed Semantics. 2011 Oct 6;2 Suppl 5(Suppl 5):S10. doi: 10.1186/2041-1480-2-S5-S10.

Abstract

BACKGROUND

Online news reports are increasingly becoming a source for event-based early warning systems that detect natural disasters. Harnessing the massive volume of information available from multilingual newswire presents as many challanges as opportunities due to the patterns of reporting complex spatio-temporal events.

RESULTS

In this article we study the problem of utilising correlated event reports across languages. We track the evolution of 16 disease outbreaks using 5 temporal aberration detection algorithms on text-mined events classified according to disease and outbreak country. Using ProMED reports as a silver standard, comparative analysis of news data for 13 languages over a 129 day trial period showed improved sensitivity, F1 and timeliness across most models using cross-lingual events. We report a detailed case study analysis for Cholera in Angola 2010 which highlights the challenges faced in correlating news events with the silver standard.

CONCLUSIONS

The results show that automated health surveillance using multilingual text mining has the potential to turn low value news into high value alerts if informed choices are used to govern the selection of models and data sources. An implementation of the C2 alerting algorithm using multilingual news is available at the BioCaster portal http://born.nii.ac.jp/?page=globalroundup.

摘要

背景

在线新闻报道日益成为基于事件的自然灾害早期预警系统的信息来源。由于复杂时空事件的报道模式,利用多语言新闻专线提供的海量信息既带来了诸多挑战,也蕴含着诸多机遇。

结果

在本文中,我们研究了利用跨语言相关事件报告的问题。我们使用5种时间异常检测算法,对根据疾病和爆发国家分类的文本挖掘事件追踪16次疾病爆发的演变情况。以ProMED报告作为黄金标准,在129天的试验期内对13种语言的新闻数据进行比较分析,结果显示,使用跨语言事件时,大多数模型的敏感性、F1值和及时性均有所提高。我们报告了2010年安哥拉霍乱的详细案例研究分析,该分析突出了将新闻事件与黄金标准关联时所面临的挑战。

结论

结果表明,如果运用明智的选择来指导模型和数据源的选取,那么利用多语言文本挖掘进行自动化健康监测就有可能将低价值新闻转化为高价值警报。可在BioCaster门户网站http://born.nii.ac.jp/?page=globalroundup上获取使用多语言新闻的C2警报算法的实施方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5400/3239300/2f1b3c889172/2041-1480-2-S5-S10-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验